
CS1380 Distributed Computer Systems Benson

Get Going with Go
Spring 2018

Contents

1 Introduction 1

1.1 About Go . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Installation 2

2.1 Setting up $GOPATH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Updating Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Code Organization 3

4 Learning Go 4

4.1 Standard Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4.2 Getting Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

5 Building and Running 4

6 Testing 5

6.1 Checking Test Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

7 Recommended Tools 6

7.1 gofmt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

7.2 godoc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

7.3 IDE Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1 Introduction

Welcome to CS 138! This guide will get you started with the programming language Go. We’ll go
over getting setup (which can be a little tricky), organizing your code, formatting it, building and
running it, as well as useful plugins for your favorite editors and IDEs.

Note: We highly recommend getting set up correctly with Go before beginning on the assignments.
Also, while this is a relatively long guide, don’t feel like you have to read it all in one sitting. Treat
it more like a reference document!



CS1380 Get Going with Go Spring 2018

1.1 About Go

Go is an open-source programming language created by a team at Google (and other outside
contributors). Go was initially started in 2007 by Robert Griesemer, Rob Pike, and Ken Thompson.
Go is a systems language with roots in C, C++, and other languages. Version 1 of Go was released
in 2012 and is under active development (v1.7 was released in August 2016). If you have more
questions about Go’s history there’s a wonderful FAQ1 on their website which we urge you to check
out.

2 Installation

The department machines already have Go installed as a contrib project (v1.11) at /contrib/bin/go1.11,
but in case you want to use your own machine, you can follow the official installation directions2.
Note that the department machines also have go 1.7 installed, but this course uses 1.11. If you want
to run go commands on the department machine, you need to type go1.11 instead of just go.

If you’re on a Mac and use the Homebrew3 package manager, you can simply run brew install go
to install the latest version.

If you’re on Windows, this blog post4 by Wade Wegner is a great reference.

2.1 Setting up $GOPATH

The next step in setting up Go, and something students often find tricky, is setting up your $GOPATH.
The creators of Go are very opinionated, and the approach they recommend is to store all of your
Go source code (across all of your different projects) in one directory on your computer, called your
$GOPATH.

You’ll want to choose a directory to act as your $GOPATH on each system that you intend to use to
work on CS138, including your CS account on the department file system.

If you think you’re only going to use Go for CS138, then feel free to choose a CS138-specific
directory as your $GOPATH, like ~/course/cs138/go. Otherwise something like ~/go works great!
We recommend putting your path somewhere in your home directory for easy access. Windows
users may use something like C:\Users\<username>\go.

2.2 Updating Environment Variables

Once you’ve decided what your $GOPATH will be, add the following two lines to a configuration file
for the shell you’re using. For bash (the default on the CS machines as well as on macOS), the file
is ~/.bash_profile.

export GOPATH=~/path/to/your/gopath
export PATH=$PATH:$GOPATH/bin

1https://golang/doc/faq
2https://golang.org/doc/install
3http://brew.sh/
4http://www.wadewegner.com/2014/12/easy-go-programming-setup-for-windows/

2

https://golang/doc/faq
https://golang.org/doc/install
http://brew.sh/
http://www.wadewegner.com/2014/12/easy-go-programming-setup-for-windows/
https://golang/doc/faq
https://golang.org/doc/install
http://brew.sh/
http://www.wadewegner.com/2014/12/easy-go-programming-setup-for-windows/


CS1380 Get Going with Go Spring 2018

To see if this worked, open a new Terminal window and type echo $GOPATH and confirm that your
$GOPATH prints to the screen. It’s important to verify this, as an incorrect $GOPATH will lead to
problems down the line.

Windows users will need to open System > Advanced System Settings > Environment Variables,
then click New under System Variables, and set GOPATH to C:\path\to\your\gopath. You can
see if this worked by typing echo %GOPATH% in your command line.

Now that this is set up, you can download a Go project along with all of its dependencies by simply run-
ning go get github.com/<user>/<proj>. Try it now with go get github.com/golang/example/hello.

This will download the source code of that project from GitHub, and put it in your $GOPATH along
with any other packages that the project may depend on. If the project includes buildable binaries,
running go get will also build and install those in $GOPATH/bin, which will make them runnable
anywhere on your system. Try that by running hello in your Terminal. You should see the output
Hello, Go examples!.

3 Code Organization

The $GOPATH contains source code, packages, and binary executables in $GOPATH/src, $GOPATH/pkg,
and $GOPATH/bin respectively. You’ll only have to edit the files in $GOPATH/src, as Go will generate
packages and binaries for you when you compile your Go projects.

$GOPATH/src contains all your Go source code, and is divided up into folder structures that
mirror the URL of the git repository that the code comes from. For instance, the repository
github.com/<user>/<proj> will get installed to the directory $GOPATH/src/github.com/<user>/<proj>.

A repository of Go code can contain one or more packages:

• A package is a collection of related .go files, usually implementing one particular algorithm or
utility.

• Most packages are designed to be shared, and will be imported into other files. Within
packages, you can decide which types and functions are “exported,” meaning they will be
available to code written outside of this package. In contrast, “unexported” types and functions
are only available for use within the package.

• Code in the special package main is designed to be compiled into an executable binary, usually
a command-line program run by end users.

• Note that a project or repository can have several main packages. Each of them may exist in
different directories, and will compile to different binaries (named after the directory). This
is a common pattern in projects with multiple executables or CLI programs (client and
server, for example.)

• See the Building and Running section for information on building packages and binaries.

Note that in this class, for each project (except for Puddlestore) we provide the stencil code for
each runnable binary that you will want to generate. So you don’t have to worry too much about
the structure of your packages and code, and can focus on implementing the systems we ask you to
implement.

3



CS1380 Get Going with Go Spring 2018

4 Learning Go

The best way to pick up the basics of Go is to walk through the Tour of Go5.

In particular, look out for the difference between slices and arrays (hint: you should almost always
use slices in Go), exported vs. unexported names, channels, and goroutines.

If you prefer a more hands-on approach to learning Go, the Go by Example6 series is a great set of
practical code examples in Go representing some of the language’s unique features.

Current TAs of the class have had great results when learning Go by simply looking at the
corresponding example when they got to a part of the project code that required a particular feature
they hadn’t seen before.

4.1 Standard Library

Once you get up-and-running with Go’s syntax and actually start writing code, the most compre-
hensive reference for Go’s standard library can be found here7.

Every package, along with all of their functions and types are very well documented in these pages,
including type signature and a description of what each function and type does.

4.2 Getting Help

Links to the Go forums, mailing list, Slack, and FAQ can be found on the help page8.

If you get confused about a particular function you come across in CS138, or if you need to find out
how to do something you haven’t seen before, you can always search for “golang [your question]”.
Note that typing “golang” instead of “go” will usually give better results, since a lot of things on
the Internet are called “go” (like HBO Go!).

5 Building and Running

There are three main commands you should be aware of to build and run Go code:

• go build

When you want to compile a main package into an executable (such as compiling your CoinLite
binary), run go build /path/to/main/package/. This will compile the binary, link any
imports, and place the executable into your current working directory.
When you want to compile a non-main package, go build /path/to/package will compile
all the files, link any imports, and exit without any generated files. This is useful to see if
your package compiles without errors or warnings.

5https://tour.golang.org/welcome/1
6https://gobyexample.com
7https://golang.org/pkg/
8https://golang.org/help/

4

https://tour.golang.org/welcome/1
https://gobyexample.com
https://golang.org/pkg/
https://golang.org/help/
https://tour.golang.org/welcome/1
https://gobyexample.com
https://golang.org/pkg/
https://golang.org/help/


CS1380 Get Going with Go Spring 2018

• go run

When you want to compile and quickly run a main package, but not save the resulting binary
executable, run it with go run ./path/to/file.go, where file.go is a file in the main
package.

• go install

When you want to compile a main package and add the generated binary to $GOPATH/bin,
run go install /path/to/main/package. This means you can simply run the binary from
anywhere, such as $ coinlite -mode ... -addr ..., since the binary can be found from
your $PATH.

• go 1.11

Remember, when you use go on the department machines, you need to explicitly refer to
go1.11 instead of just go. On the dept machines, go refers to go 1.7, which is not the version
this course uses.

Usually, we recommend using go install while working on your projects. This is so that you can
compile and generate multiple binaries at once, and use them instantly from anywhere. For instance,
in a project that generates a binary for clients and a binary for servers, running go install ./...
(note the ellipsis) will build every main package Go can find in the current directory downwards, and
install them into $GOPATH/bin. Then you have immediate access from anywhere on your machine
to those compiled binaries.

6 Testing

You can write tests in Go by creating a file that ends with _test.go, and writing test functions
within these files. Test functions are simply functions that begin with “Test” and take only one
parameter, of type *testing.T.

You can run all the test functions for the current package using go test. Each test function will
run once, and give you a chance to programmatically test the rest of your code. Examples of good
tests include running different parts of your code, and verifying that the output or side effects from
the code are consistent with what you expect.

In a distributed systems context, good tests should include firing up several servers that collectively
make up the system, sending queries to this system, and most importantly taking down certain
servers to see if your system is degrading as gracefully as you expect.

Note also that it is common practice to make each test file part of the package it is testing. So a file
that tests the functionality of the foo package should itself be part of the foo package. Among
other reasons, this is done so that the test file can test both the exported and the unexported
functions of the package.

Full details on the Go testing package are available in the package docs9.
9https://golang.org/pkg/testing/

5

https://golang.org/pkg/testing/
https://golang.org/pkg/testing/


CS1380 Get Going with Go Spring 2018

6.1 Checking Test Coverage

Go also provides a tool to check your current test coverage. If you’re unfamiliar with the term, test
coverage means the percentage of statements in your code that are executed when running the test
suite. In general, you want to aim for test coverage around 80% in this class, keeping in mind that
some boilerplate code (like printing out help messages when the user types in help into the CLI)
probably don’t need to be tested.

The best way to measure test coverage in Go is to visualize the coverage using the go test
-coverprofile=... command. This generates HTML files that show visually, using green and red
text, which lines of your code were run or not in your test suite. Every line of code that you write
yourself (i.e. code not originally in the stencil), should be tested!

Details on the tool and how to use it are covered in this excellent blog post10.

Note: Some IDE plugins are quite powerful and show test coverage in your code editor! Make sure
to install them.

7 Recommended Tools

7.1 gofmt

Go provides a convenient command-line utility called gofmt11 that formats your code, altering
indentation and spacing rules to generate code that fits the Go style guide. However, we recommend
running gofmt on your code much more often (preferably each time you save) when working on your
projects! It’s a great, low-effort way of keeping your code looking manageable as you work on it.

Note: You must run gofmt on all your code before you handin. This is part of the style grade for
each assignment.

7.2 godoc

Go provides the godoc command for quickly browsing package documentation. Running go doc
<package> can show the documentation available in the source code of packages you have installed
(often exactly what is in the online docs.) You can browse by package (go doc fmt or go doc
github.com/abiosoft/ishell), or by a specific symbol (go doc net.OpError.Temporary or go
doc github.com/abiosoft/ishell.Shell). You can even use it for your own code if you leave
comments before functions, struct members, or other declarations.

7.3 IDE Plugins

Using plugins for Go for your favorite editor will greatly improve your workflow, and as such we
highly recommend you install them. In particular, plugins exist to automatically run gofmt on
your code each time you save, show test coverage inline, and lint your code for style. Here are some
links:

10https://blog.golang.org/cover
11https://golang.org/cmd/gofmt/

6

https://blog.golang.org/cover
https://golang.org/cmd/gofmt/
https://blog.golang.org/cover
https://golang.org/cmd/gofmt/


CS1380 Get Going with Go Spring 2018

• Vim: vim-go

• Emacs: go-mode.el

• Atom: go-plus

• Sublime Text 3: GoSublime

• Eclipse: GoClipse

• Notepad++: npp-golang

You can also try Gogland, a new IDE from JetBrains (still in beta), that comes with these tools
in-built.

Please let us know if you find any mistakes, inconsistencies, or confusing language in this or any
other CS1380 document by filling out the anonymous feedback form:

http://cs.brown.edu/courses/cs138/s18/feedback.html.

7

https://github.com/fatih/vim-go
https://github.com/dominikh/go-mode.el
https://atom.io/packages/go-plus
https://github.com/DisposaBoy/GoSublime
https://github.com/GoClipse/goclipse/blob/latest/documentation/Installation.md#installation
https://github.com/tlowry/npp-golang
https://www.jetbrains.com/go/
http://cs.brown.edu/courses/cs138/s18/feedback.html

	Introduction
	About Go

	Installation
	Setting up $GOPATH
	Updating Environment Variables

	Code Organization
	Learning Go
	Standard Library
	Getting Help

	Building and Running
	Testing
	Checking Test Coverage

	Recommended Tools
	gofmt
	godoc
	IDE Plugins


