
CS1380 Distributed Computer Systems Benson

GRPC
Spring 2018

Contents

1 Introduction 1

2 Protocol Buffers 1

3 gRPC Example 3

4 gRPC Methods 5

5 GoBook 6

1 Introduction

This lab is intended to get you more familiar with gRPC which you will require to implement
everything from scratch in Puddlestore. An excellent resource to learn gRPC is the official docs
themselves. This lab will use much of the relevant portions from this Go tutorial. You can learn
how to setup and install everything via this quickstart guide.

gRPC is Google’s RPC framework and the protocol itself is built on http2. It has many advantages
such as the ability to enable different languages to interact with each other via gRPC calls.

gRPC uses Protocol Buffers for serialization/deserialization of objects and data structures sent
between clients and servers. Developers need to define their data structures in .proto files and auto
generated code provides functions that allow for these structures to be serialized/deserialized.

In this lab you will look at a small example to understand the basics of both gRPC and Protocol
Buffers. Once you have an understanding, we will ask you to implement a small (yet hopefully
fun) task for you to apply your newly acquired knowledge. This is an optional lab to increase your
understanding about gRPC and will not be graded.

2 Protocol Buffers

In order for Protocol Buffers to serialize/deserialize an object, that object must be defined as a
message in a .proto file. Lets look at a small example taken from the google documentation before
we dive any further:

message Person {

http://www.grpc.io/docs/
http://www.grpc.io/docs/tutorials/basic/go.html
http://www.grpc.io/docs/quickstart/go.html
https://en.wikipedia.org/wiki/Protocol_Buffers
https://developers.google.com/protocol-buffers/docs/gotutorial

CS1380 GRPC Spring 2018

string name = 1;
int32 id = 2; // Unique ID number for this person.
string email = 3;

enum PhoneType {
MOBILE = 0;
HOME = 1;
WORK = 2;

}

message PhoneNumber {
string number = 1;
PhoneType type = 2;

}

repeated PhoneNumber phones = 4;
}

// Our address book file is just one of these.
message AddressBook {

repeated Person people = 1;
}

A message is just an aggregate containing a set of typed fields. Many standard simple data types
are available as field types, including bool, int32, float, double, and string. You can also add
further structure to your messages by using other message types as field types.

Say our code has a Person object which we wish to serialize. We would need to define and lay-
out a Person message corresponding to that class in our .proto file so that the Protocol Buffers
compiler can accordingly handle the object and provide us with a method to serialize and deserialize it.

In the above example, the Person message contains PhoneNumber messages, while the AddressBook
message contains Person messages. You can even define message types nested inside other messages
– as you can see, the PhoneNumber type is defined inside Person. You can also define enum types if
you want one of your fields to have one of a predefined list of values – here you want to specify that
a phone number can be one of MOBILE, HOME, or WORK.

The = 1, = 2 markers on each element are unique “tags” that uniquely identify the field in the
binary encoding. Tag numbers 1-15 require one less byte to encode than higher numbers, so as an
optimization you can decide to use those tags for the commonly used or repeated elements, leaving
tags 16 and higher for less-commonly used optional elements.

A field may be repeated any number of times (including zero). The order of the repeated values will
be preserved in the Protocol Buffers. You can also think about repeated fields as dynamically sized
arrays.

2

CS1380 GRPC Spring 2018

There is a lot more to Protocol Buffers that can be learned via the documentation. However this
should be more than sufficient for PuddleStore purposes.

3 gRPC Example

Now that we have an understanding of what Protocol Buffers are, we can move onto understanding
more about the working of gRPC.

Protocol Buffers are the central part of using gRPC! In order to use gRPC, there are three things
you have not learned to do in CS 1380 yet: defining RPC services, creating the RPC calls, and
representing the input/return types of these RPC calls as Protocol Buffer messages. Note that you
have already worked on implementing new RPC calls in Tapestry and Raft.

Let’s look at our very own Chord as an example for this! To define a Chord RPC service, we can
simply do:

service ChordRPC {
....

}

Now that we have the service, let’s say we want to make an RPC call for retrieving the predecessor Id
of some node and we want to call it GetPredecessorIdCaller. We can define it in the ChordRPC
service as follows:

service ChordRPC {
rpc GetPredecessorIdCaller(RemoteNodeMsg) returns (IdReplyMsg);

}

Now there are a few things to note here: rpc is a keyword to let know that we are defining an RPC
method. This is followed by the name of the RPC function. We than provide the input arguments
to the functions which will be a Protocol Buffers message defined later on. In this case the message
is called RemoteNodeMsg. returns (IdReplyMsg) indicates that the return type of this RPC calls
will be another Protocol Buffer message called IdReplyMsg. It is important to note here that a
gRPC function can have only one input argument and one return type! In fact it must have one
input argument and one return type. Even if you don’t require an input argument and/or a return
type, you must provide one. If such is the case, you can just create a placeholder message called
Empty, for example, and use it across all such cases.

Now all that is left for us to do is define the messages we specified as the argument and return for
our rpc function as follows:

message RemoteNodeMsg {
bytes Id = 1;

3

CS1380 GRPC Spring 2018

string Addr = 2;
}

message IdReplyMsg {
bytes Id = 1;
string Addr = 2;
bool Valid = 3;

}

Our chord.proto file will look like this:

syntax = "proto3";

package chord;

service ChordRPC {
rpc GetPredecessorIdCaller(RemoteNodeMsg) returns (IdReplyMsg);

}

message RemoteNodeMsg {
bytes Id = 1;
string Addr = 2;

}

message IdReplyMsg {
bytes Id = 1;
string Addr = 2;
bool Valid = 3;

}

Note that syntax = "proto3" is required at the start of your proto file to indicate the version of
Protocol Buffers being used and the package is chord. Now if you take a look at the chord.proto
which was provided with Chord, you can see that its the same thing except with all the other RPC
methods and messages that the actual Chord implementation needs.

It is worth noting that there are many other variants of RPC calls that can be defined in a .proto
file. These include server-side streaming, client-side streaming etc. You can learn more about these
in the documentations.

Once we have our .proto file created, we need to convert it into something that we can use in our
Go Code. That is where the magic comes in. Assuming our .proto file is in a folder call Chord, we
can run the following command:

protoc -I Chord/ Chord/chord.proto --go_out=plugins=grpc:chord

4

CS1380 GRPC Spring 2018

The above command will take the chord.proto file and generate a file called chord.pb.go. This
file will contain compiler generated code that we can simply plug into our Chord implementation
and start filling out right away! The command protoc will take in an import folder specified via
-I Chord/ to scan for imports. Chord/chord.proto is the location of the .proto file to compile.
--go_out= means the language to compile our .pb.go is go. plugins=grpc indicates to use the
grpc plugin and :chord is the output folder for our compiled .pb.go.

The main thing you need to take away from the generated file chord.pb.go is the interface you
need to implement on the server side of your application. The functions of this interface are always
of a standard form:

type ChordRPCServer interface {
GetPredecessorIdCaller(context.Context, *RemoteNodeMsg) (*IdReplyMsg, error)

}

The name of the interface will be whatever you called the service in the .proto file appended with
the string Server. So in our example, since we called the service ChordRPC, the interface is called
ChordRPCServer. The RPC function takes in the RemoteNodeMsg type and an additional Context
parameter. Unless you’re doing XTrace, you shouldn’t be concerned with that parameter and can
use context.Background() as a default input. The return types are self-explanatory.

There we have it! Now we simply need to implement the function GetPredecessorIdCaller in our
code and we can use it right away.

4 gRPC Methods

To call gRPC methods, we first need to create a gRPC channel to communicate with the server. We
create this by passing the server address and port number to grpc.Dial() as follows:

conn, err := grpc.Dial(*serverAddr)
if err != nil {

...
}
defer conn.Close()

You can use DialOptions to set the auth credentials (e.g., TLS, GCE credentials, JWT credentials)
in grpc.Dial if the need arises. Once the gRPC channel is setup, we need a client stub to perform
RPCs. We get this using the NewChordRPCClient method provided in the pb package we generated
from our .proto.

Now let’s look at how we call our gRPC methods. Note that in gRPC-Go, RPCs operate in a
blocking/synchronous mode, which means that the RPC call waits for the server to respond, and will
either return a response or an error. Calling the simple RPC GetFeature is nearly as straightforward
as calling a local method.

5

CS1380 GRPC Spring 2018

response, err := client.GetPredecessorIdCaller(context.Background(),
&pb.RemoteNodeMsg{})

5 GoBook

For our lab, we will create a small distributed social networking platform called “GoBook”. GoBook
consists of a central news feed that students can post to using their GoBook clients. Other students
can read the news feed and “Like” posts as well as comment on them. Students can also send a PM
(Private Message) to other students.

The wonder of using gRPC for GoBook is that every student can write the client in their own
language provided a common .proto file is being used.

You are required to do the following:

• Create a GoBook Server. The GoBook server should register users and store relevant informa-
tion such as IP address and username. The server will also have a news feed that users can
post new posts to or comment/like existing ones. The server should also be able to provide a
list of users currently online.To call gRPC methods, we first need to create a gRPC channel to
communicate with the server. We create

• Create a GoBook Client. The client should register its user with the server. The client
can also view the current news feed and provide functionality for posting new posts or
commenting/liking existing ones. Clients can also send other users PM’s by asking the server
for their IP adresses.

Note that we are keeping the specification of GoBook vague, so you have control of the design. This
is to give you practice for Puddlestore, where you will have full control over the design of your API
calls.

Please let us know if you find any mistakes, inconsistencies, or confusing language in this or any
other CS1380 document by filling out the anonymous feedback form:

http://cs.brown.edu/courses/cs138/s18/feedback.html.

6

http://cs.brown.edu/courses/cs138/s18/feedback.html

	Introduction
	Protocol Buffers
	gRPC Example
	gRPC Methods
	GoBook

