
Lecture 5:

JavaScript

Lecture 5: JavaScript

JavaScript & Tracks

• Designer
o What JavaScript can be used for
o When it should be used on a web page
o How and when to incorporate interaction into your designs

▪ What is possible, easy, …

• Concentrator
o How to use JavaScript
o Common errors
o How to write and debug JavaScript code
o What are the important features of the language

1/22/2020 2

Lecture 5: JavaScript

Static versus Dynamic Pages

• What does dynamic mean
• Most good application user interfaces are dynamic

o Examples

• Web Pages are inherently static
o HTTP model: action replaces the whole page

• Web applications require dynamics
o Can these be done with pure HTML?

1/22/2020 3

Lecture 5: JavaScript

HTML is Basically Static

• Provides a description of the page, not what to do with it
o Dynamics from built-in widgets (forms)

▪ Clicking on submit causes a new page request, not an action on the page
▪ With name-values pairs for the widgets as part of the URL or post data
▪ Result is a page that REPLACES the current page

o Limited dynamics from CSS tags
o Limited interaction

• Is this sufficient for a web application?

1/22/2020 4

Lecture 5: JavaScript

How to Allow Dynamic Interactivity
• Plugins

o Code (library) that is loaded into the browser
▪ Using a somewhat standard API
▪ Browser and platform specific

o Introduce security and other problems
▪ People are told not to install these

• Applets
o Java programs downloaded and run by the browser

▪ Using a standard interface
o Introduce security and other problems

▪ Java runs in a sandbox (you hope)
▪ People are told not to enable these

1/22/2020 5

Lecture 5: JavaScript

How to Allow Dynamic Interactivity

• Extend HTML into a programming language
o Historically different languages tried

▪ VBScript, JavaScript, others
▪ Hence the SCRIPT tag in HTML

o CSS has some capabilities for interactivity
▪ But it isn’t a programming language

o Eventually JavaScript won
▪ Officially ECMAScript (standardized); ES6 is the latest incarnation

o Available in almost all browsers today
▪ Can be disabled

1/22/2020 6

Lecture 5: JavaScript

JavaScript Example

• Sumcompute.html
o Show in operation
o Lets look at how it works

1/22/2020 7

Lecture 5: JavaScript

What is JavaScript
• Type-less (dynamically typed) Scripting Language

o Data is typed dynamically (at run time) rather than statically
o Language is interpreted rather than compiled (in theory)
o TypeScript – typed JavaScript is becoming more common

• Complete with libraries
o Libraries providing basic functionality (strings,…)
o Libraries providing access to browser capabilities

• Automatically invoked by the browser
o Notion of events, on-conditions
o Reactive language

• Can be embedded in HTML or in separate files for web pages
• Used for other purposes as well

o Back end: Node.JS; Mobile Applications: NativeScript, React Native

1/22/2020 8

Lecture 5: JavaScript

JavaScript is Procedural

• Standard control constructs
o Loops, conditionals, …

• Functions and calls are the primary mechanisms
o User-defined functions
o Functions called by browser
o Library functions

• Modules provide high-level organization

1/22/2020 9

Lecture 5: JavaScript

JavaScript is Functional

• Functions are first class objects
• Can be passed and used explicitly
• Lambda expressions and continuations

1/22/2020 10

Lecture 5: JavaScript

JavaScript is Object-Oriented
• Objects with fields and methods
• Prototype-based, not class-based
• new Object(), { }, { x : 1, y: 3+4 }

o Dynamic set of fields and methods

• new Type()
o Type is a function, not a class
o Use of this inside its methods refers to the object

• Latest JavaScript has Java-like classes with inheritance, etc.
o Syntactically, not internally

1/22/2020 11

Lecture 5: JavaScript

JavaScript Declarations
• No types => No declarations
• Except you have scopes

o Global scope
o Function scope
o Local scopes (sometimes)
o But function scopes nest

• Variables are global by default
o Except for parameters
o Except for variables declared using var or let or const in a function

▪ Good practice: declare all variables
▪ Good practice: use let or const, not var

1/22/2020 12

Lecture 5: JavaScript

JavaScript Data Types
• Numeric types (int, double)
• Booleans (true, false) {0,NaN,””,null,undefined}
• null, undefined
• Arrays

o Indexed (Arrays)
o Associative arrays (Objects)

• Strings (“..”, ‘…’)
• Templated Strings (`…${expr}…`)
• Regular Expressions (/pattern/g)
• Functions
• Objects

o Field-value pairs with some inheritance
o Values can be functions (methods)
o Associative arrays

1/22/2020 13

Lecture 5: JavaScript

JavaScript Strings

• Can use single or double quotes
o Backslash escapes

• JavaScript is designed somewhat for string processing
• String equality (s == “hello”)
• String concatenation (“hello” + “ ” + “world”)
• Other string functions

o indexOf, split, substring, charAt, toUpperCase, toLowerCase
o endsWith, startsWith, contains

1/22/2020 14

Lecture 5: JavaScript

JavaScript Templated Strings

• Use backquote (`) as delimiter
• Can span multiple lines (new line included in the string)
• Can have embedded expressions

o ${expression}
o Replaced with the string value of the expression
o Replaces concatenation operations and complex expressions

1/23/2020 15

Lecture 5: JavaScript

JavaScript Regular Expressions

• Regular expressions are useful in web applications
o Checking formats, values
o Advanced string processing (find/replace)

• let x = /pattern/mods
o let re = /ab+c/;
o let re = /\bt[a-z]*\b/i;

• Regular expression are a basic primitive

1/22/2020 16

Lecture 5: JavaScript

JavaScript Control Constructs
• if (test) { … } else { … }
• while (test) { … }
• switch (expr) { case: … }
• break, continue
• for (init; test; update) { … }
• for (let x in expr) { … }

o Expr is an object
o x is the fields (indices) of the object
o Can use const or let

• for (const x of expr) { … }
o Expr is an Iterable (Array, String, Map, Set, NodeList, …)

• try … catch

1/22/2020 17

Lecture 5: JavaScript

JavaScript Functions
• function name(arg,arg,…) { … }

o No argument matching (type or number)
o return value
o name = function(args) { … }
o Default argument values: arg = value
o Varargs (arg,arg, …rest)

• (arg,arg) => expression
o (arg,arg) => { statements }

• Functions are first-class objects
o Can be assigned to variables
o Can be passed as arguments
o Can be used as values

1/22/2020 18

Lecture 5: JavaScript

JavaScript Scopes
• Global, function, and local scopes
• Variables are global unless otherwise stated

o var x; declares a variable to be local if in function
▪ Can occur anywhere in the scope (& multiple times)

o let x; declares a variable to be in local scope
o const x; declares a non-changeable variable in the local scope
o parameters are local
o Function scopes can nest with nested functions

• Many JavaScript problems are scope errors

1/22/2020 19

Lecture 5: JavaScript

JavaScript Objects
• An object is a dynamic mapping of fields to values

o let x = new Object(); let x = { }
o x.y = 5, x[“y”] = 5
o x.plusone = function() { return x.y + 1; }

▪ x.plusone() == 6
o for (let x in object) { print x,object[x]; }

• Objects can be defined explicitly
o function Type(a) {

▪ this.field = a;
▪ this.method = function() { return this.field+a; }; }

o var x = new Type(5);
• Objects can be defined incrementally

o Type.prototype.method = function() …

1/22/2020 20

Lecture 5: JavaScript

JavaScript Arrays
• Arrays are indexed (numerically)

o x = [1,2,”a”,5]
o x[0] = 1; x[1] = 2;
o x[2]= “a”; x[3] = 5;

• Should be used as such
o Not associative

▪ A[“hello”] works but not the way you expect
▪ Why?

o Do not use for(let x in ARRAY)
▪ Might not do what you expect
▪ Missing elements, extra elements

o You can use for(let i = 0; I < ARRAY.length; ++i) or for(let x of ARRAY)

1/22/2020 21

Lecture 5: JavaScript

JavaScript in the Browser

• Designed for interaction
o JavaScript code is typically not running all the time

▪ Invoked when something happens
▪ What might that something be?

• Event Types
o onLoad, onUnload (of page, frame, …)
o On widget value change; form submit; mouse over; …
o On almost any possible event you may want to trigger on

• As part of HTML, can specify the event handler
o onXXX=‘expression’
o Expression is typically a function or a call to a user-defined function

1/22/2020 22

Lecture 5: JavaScript

JavaScript and Threads

• JavaScript is single-threaded
o Runs as a single thread in the browser too

▪ Can hold up other things
o Considered part of page loading or UI handling

▪ The browser isn’t doing something else when your JavaScript is running

• Promises provide language-level background
processing
o We’ll cover these next week

1/22/2020 23

Lecture 5: JavaScript

What Dynamics Can JavaScript Do?

• Check the values of fields before submission
• Compute new values as part of submission

o E.g. encrypt a password

• Edit values in various ways
• Add values to other fields
• Establish timers and simple animations
• Draw on HTML5 canvases
• Modify parts of the page

1/22/2020 24

Lecture 5: JavaScript

JavaScript Debugging
• It is useful to be able to debug your JavaScript
• Most browsers today include a JavaScript debugger

o Firebug as part of firefox
o IE developer tools
o Chrome developer tools
o Safari developer tools

• Facilities
o Set breakpoints, examine values

• Learn to use it
o Before you ask TAs what’s wrong

1/22/2020 25

Lecture 5: JavaScript

JavaScript Example

• Sumcompute.html
o What was the problem
o Lets look at how it works

1/22/2020 26

Lecture 5: JavaScript

JavaScript has its Quirks

• Objects are very different from Java/C++
o Newer versions have Java-like classes however

• Functions are first class objects
• Function scopes are defined based on var statements

o Globally, not in-order,

• Automatic type conversion
• Strict versus non-strict equality testing
• eval function
• Semicolons are optional if unambiguous
• Timeouts (setTimeout and setInterval)
• Read up on the language (prelab)

1/22/2020 27

Lecture 5: JavaScript

What Else Would You Like to Do

• Change the page, animate things
• This can require extensive computation
• Next Time

1/22/2020 28

Lecture 5: JavaScript

Next Time

• DOM manipulation
• Assignment 1 is out
• Lab 1 is due before next lecture
• Project preferences due by midnight
• Homework:

o PreLab 2: to familiarize yourself with JavaScript

1/22/2020 29

Lecture 5: JavaScript

JavaScript Demo

• Basic types

1/22/2020 30

Lecture 5: JavaScript

JavaScript Demo

• Objects and Arrays

1/22/2020 31

Lecture 5: JavaScript

Question

A browser plug-in is:
A. A JavaScript file that can be downloaded as part of a page.
B. A library that becomes part of the browser once downloaded and

accepted by the user.
C. A technique that allows you to play a video directly in the browser.
D. A Java program that is run inside the browser.
E. A file that is loaded into the web server to handle special access for a

web application.

1/22/2020 32

Lecture 5: JavaScript

Questions

The JavaScript language is
I. Procedural
II. Functional
III. Object-oriented

A. I
B. III
C. I and II
D. I and III
E. I, II and III

1/22/2020 33

Lecture 5: JavaScript

Experience Reports

• What page did you look at and what types of things did
you find that were dynamic?

• What did you find that you think should be dynamic?

1/22/2020 34

