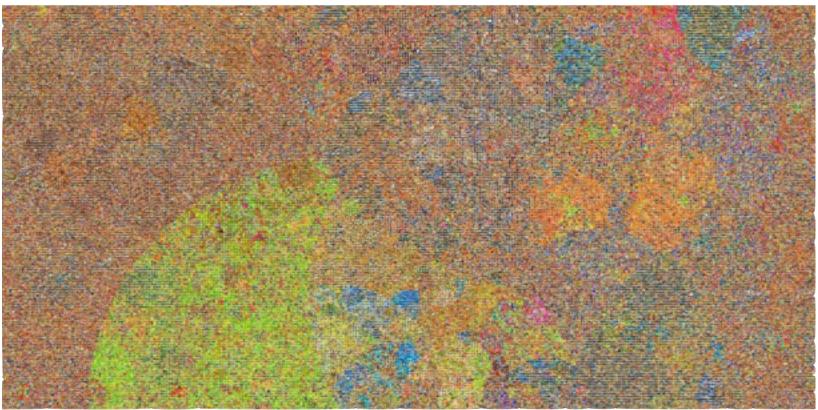
Visual Data on the Internet - Part 2

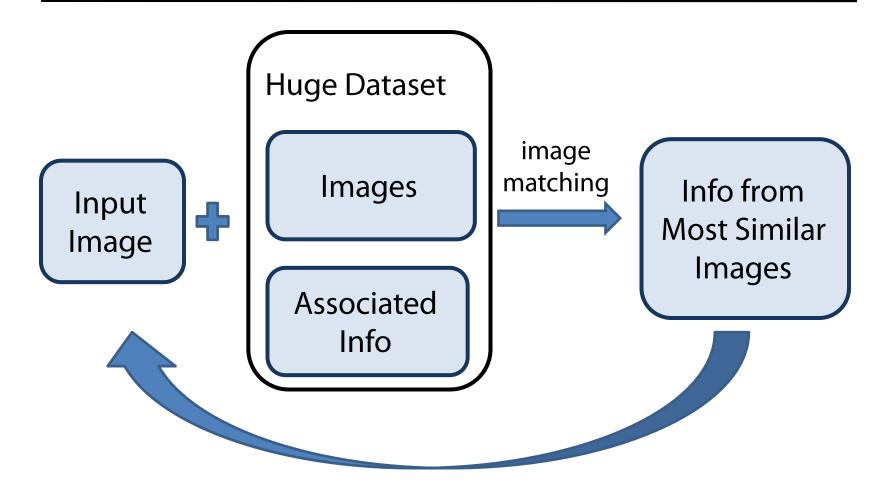


Visualization of 53,464 english nouns, credit: A. Torralba, http://groups.csail.mit.edu/vision/TinyImages/

CS 129: Computational Photography James Hays, Brown, Fall 2012

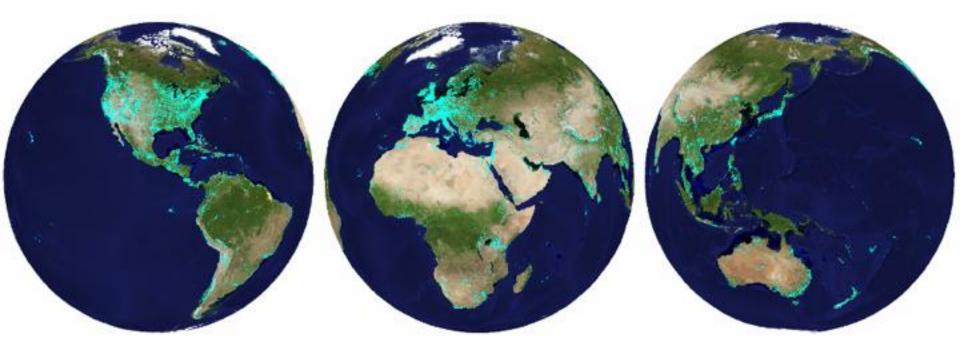
With slides from Alexei Efros, Jean Francois Lalonde, Derek Hoiem, and Antonio Torralba

Recap: Using lots of data!



Trick: If you have enough images, the dataset will contain very similar images that you can find with simple matching methods.

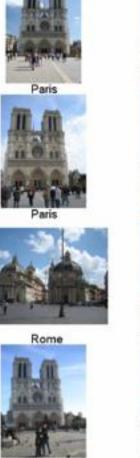
im2gps (Hays & Efros, CVPR 2008)



6 million geo-tagged Flickr images

How much can an image tell about its geographic location?





Paris

Paris

Paris

Paris

Poland

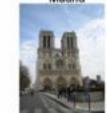
Paris

Cuba

Paris

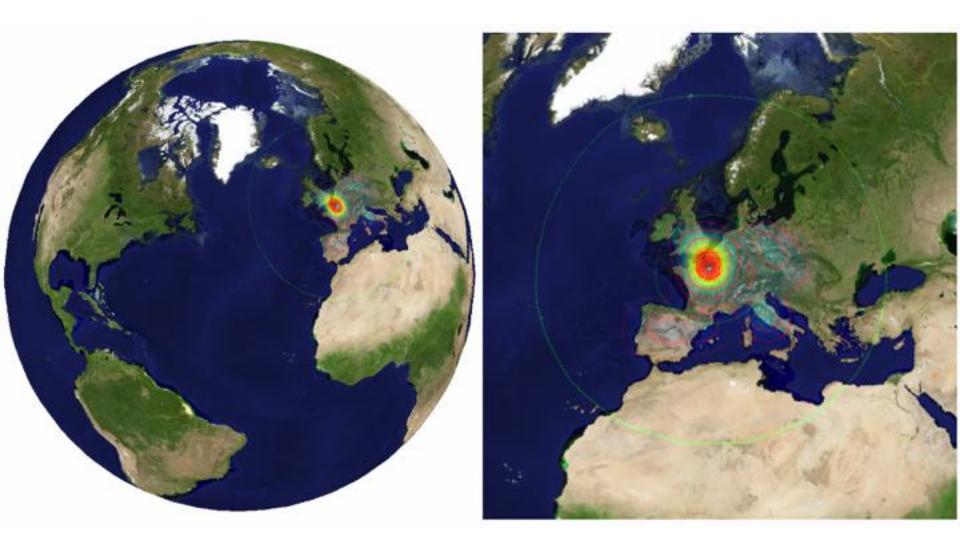
Paris

Madrid



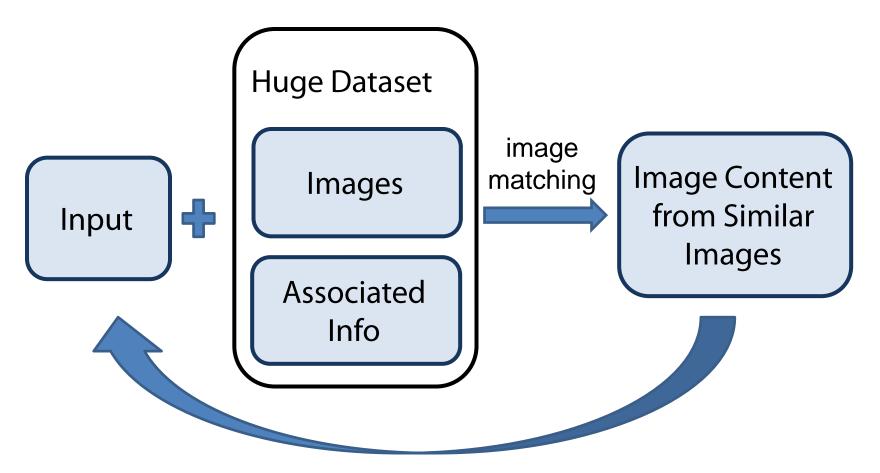
Paris

Paris

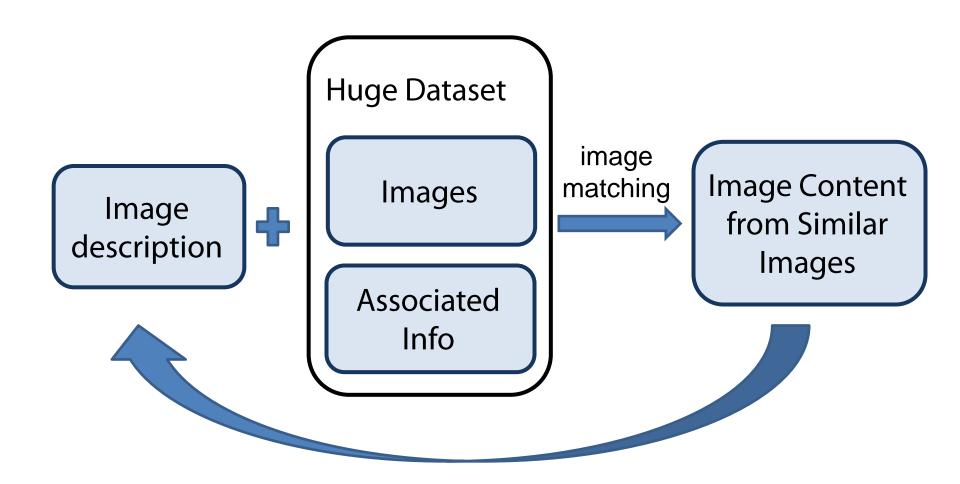


Today

Using lots of data to create new images

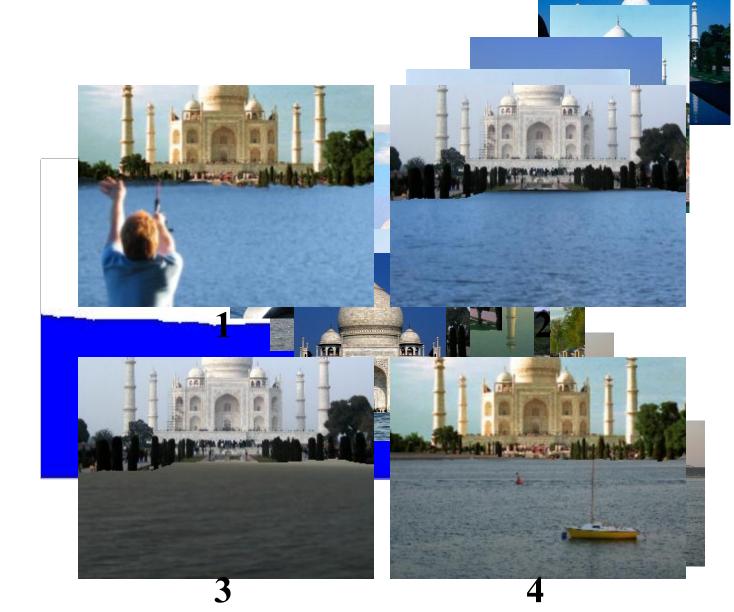


Semantic Photo Synthesis

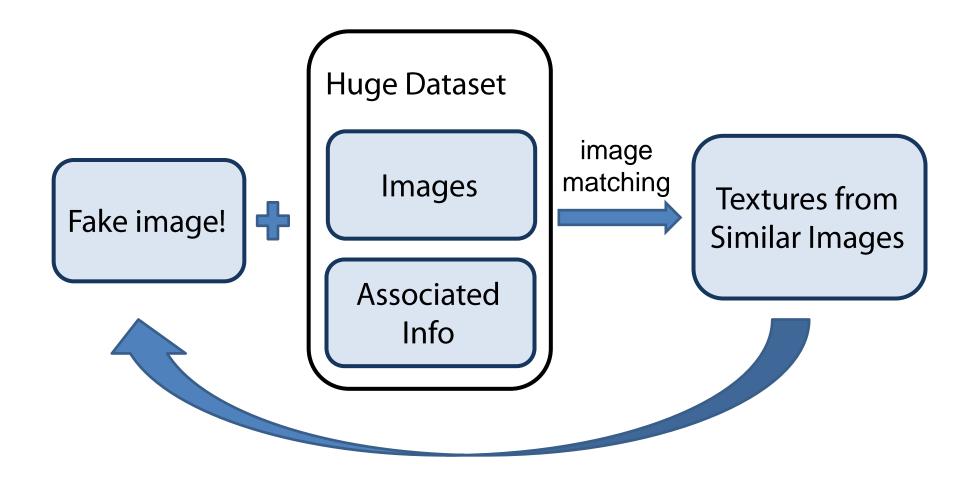


M. Johnson, G. Brostow, J. Shotton, O. A. c, and R. Cipolla, "Semantic Photo Synthesis," Computer Graphics Forum Journal (Eurographics 2006), vol. 25, no. 3, 2006.

Semantic Photo Synthesis



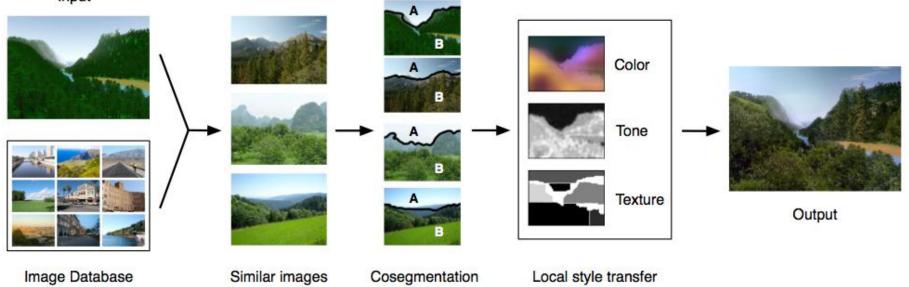
CG2Real



M. K. Johnson, K. Dale, S. Avidan, H. Pfister, W. T. Freeman, and W. Matusik, "CG2Real: Improving the realism of computer generated images using a large collection of photographs," IEEE Transactions on Visualization and Computer Graphics, 2010.

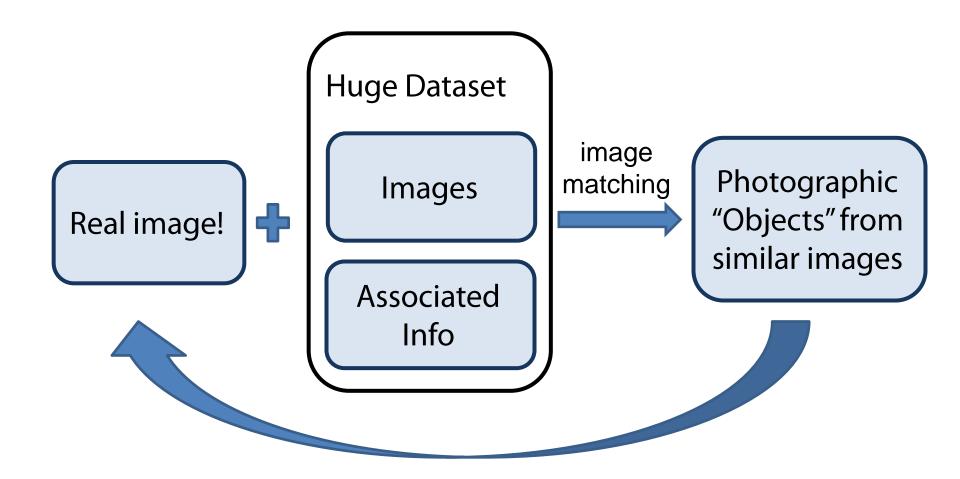
CG2Real

Input



M. K. Johnson, K. Dale, S. Avidan, H. Pfister, W. T. Freeman, and W. Matusik, "CG2Real: Improving the realism of computer generated images using a large collection of photographs," IEEE Transactions on Visualization and Computer Graphics, 2010.

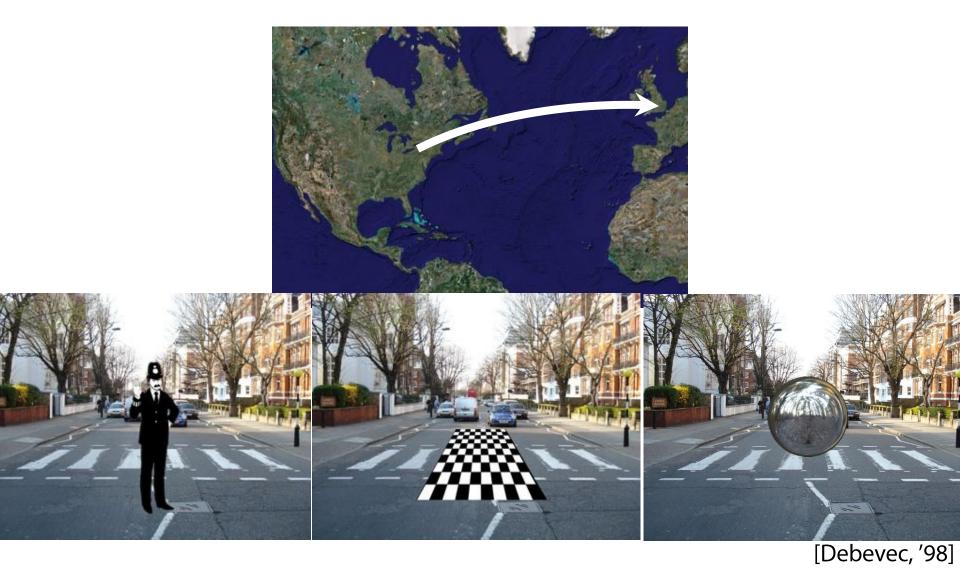
Photo Clip Art



J.-F. Lalonde, D. Hoiem, A. A. Efros, C. Rother, J. Winn, and A. Criminisi, "Photo Clip Art," ACM Transactions on Graphics (SIGGRAPH 2007), vol. 26, no. 3, Aug. 2007.

Inserting objects into images

Inserting objects into images



Inserting objects in images

Highly detailed geometry Highly detailed materials Very expensive

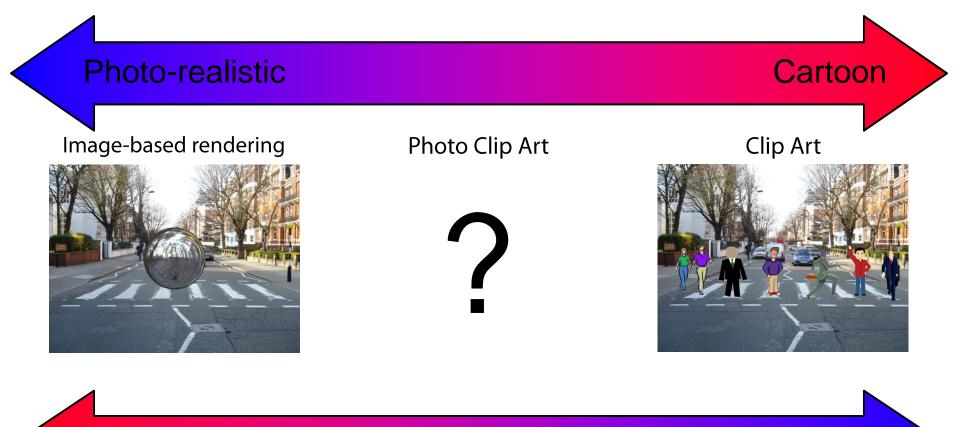
Realistic renderings Expensive and impractical

[Debevec, '98]

Alternative: Clip art

Easy, intuitive, cheap Not realistic

Creating images (2-D)



Expensive and impractical

Cheap and intuitive

"Photoshopping"

Composite by David Dewey

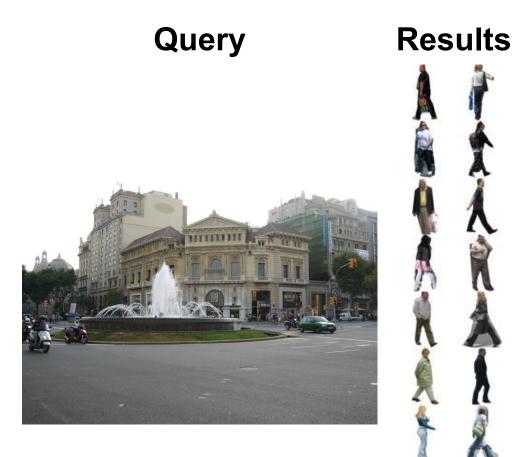
Inserting objects into images

Insert THIS object: impossible!

Insert SOME object: much easier!

The Google model

Database



Sort the objects

Online (<u>http://labelme.csail.mit.edu</u>), user-contributed 170,000 objects in 40,000 images

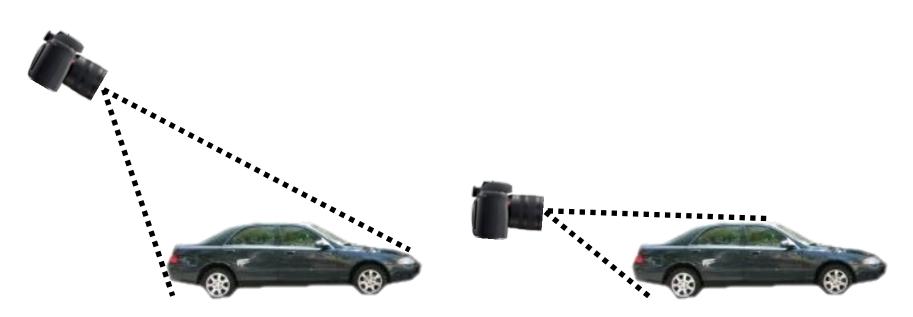
Polygons and names

Data organization

Top-level categories (chosen manually, 16 total)

What should we match?

Camera parameters



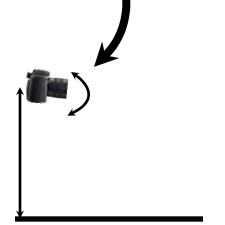
Assume

- flat ground plane
- all objects on ground
- camera roll is negligible (consider pitch only)

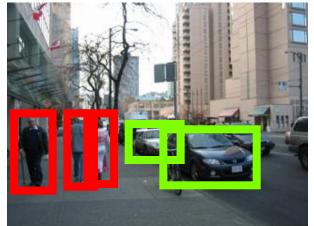
Camera parameters: height and orientation

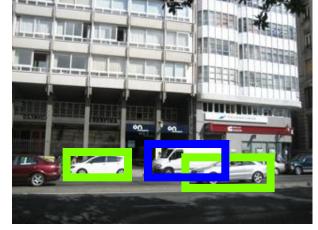
Camera parameters

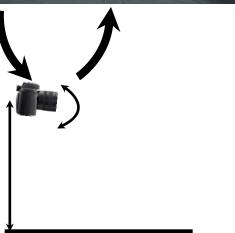
Human height distribution 1.7 +/- 0.085 m (National Center for Health Statistics)

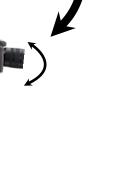


Car height distribution 1.5 +/- 0.19 m (automatically learned)









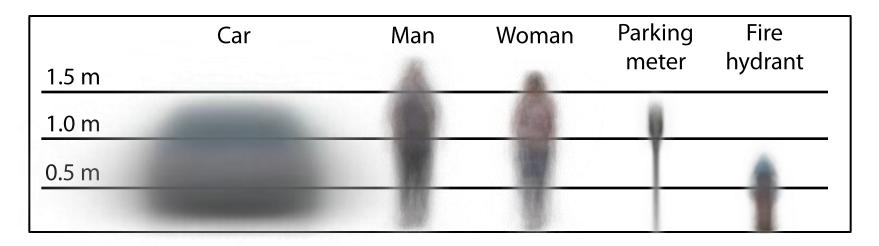
000

Object heights

Database image

Pixel heights

Real heights



Object	Estimated average height (m)
Car	1.51
Man	1.80
Woman	1.67
Parking meter	1.36
Fire hydrant	0.87

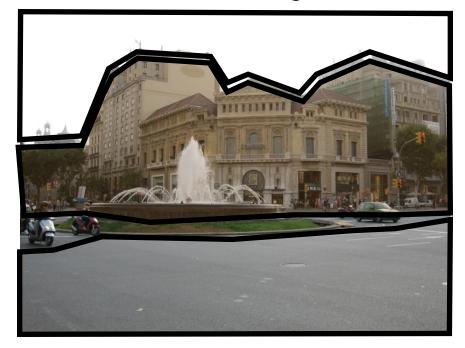
What should we match?

Geometry is not enough

Illumination context

Exact environment map is impossible

Approximations [Khan et al., '06]
Database image



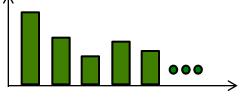
Environment map rough approximation

Illumination context

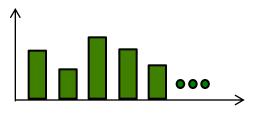
Database image

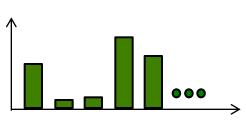
natic Photo PopupHoiem et al., SIGGRAPH '(

P(pixel|class)



CIE L*a*b* histograms





Illumination nearest-neighbors

Other criteria: local context

Other criteria: segmentation

LabelMe contributors not always reliable Segmentation quality

38 points / polygon

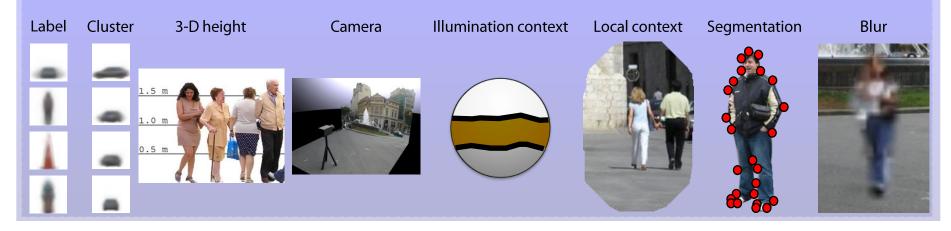
4 points / polygon

Resolution: avoid up-sampling

x3 up-sampling

Phase I: Database annotation

Object properties (used for sorting the database)



Phase II: Object insertion

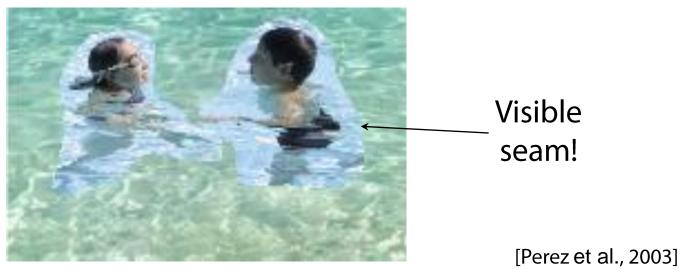
Poor user-provided segmentations Noticeable seams

Seams

Input

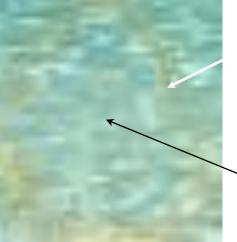
Destination image

Result



Poisson blending: idea

Destination



Enforce boundary color (seamless result)

Enforce same gradient than input

Result

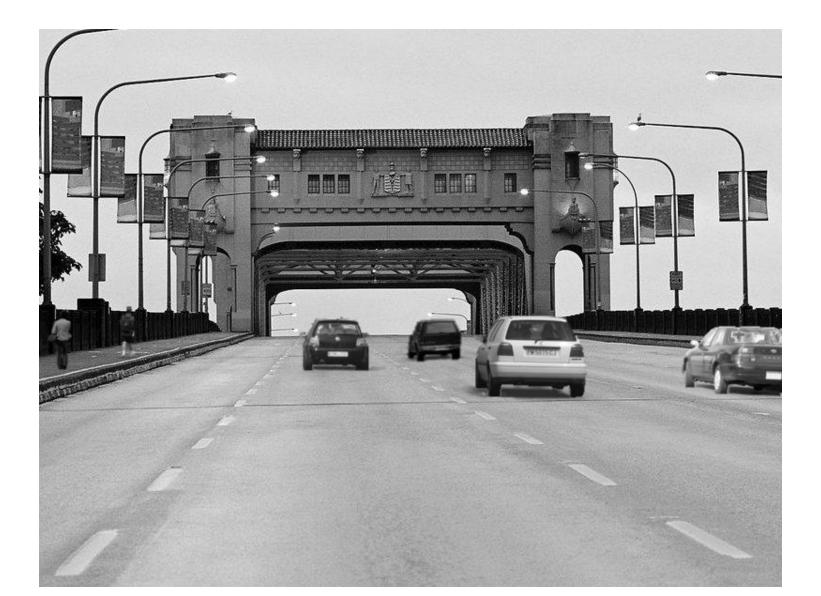
[Perez et al., 2003]

Still not right!

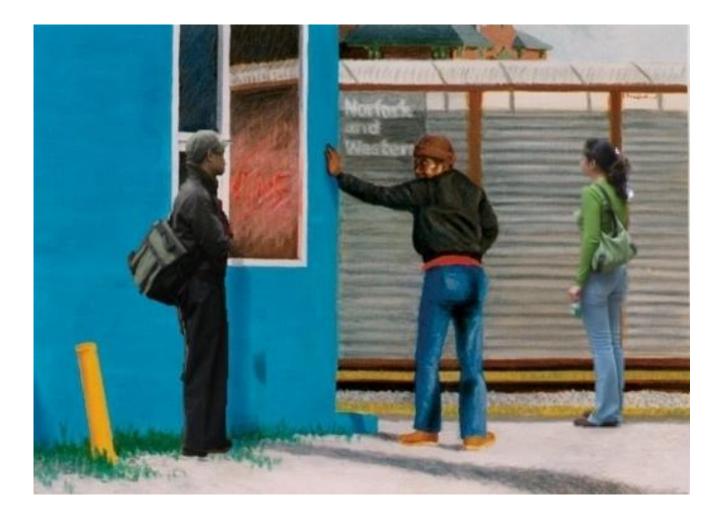
Not so sensitive to shadow direction [Cavanagh, 2005]

Street accident

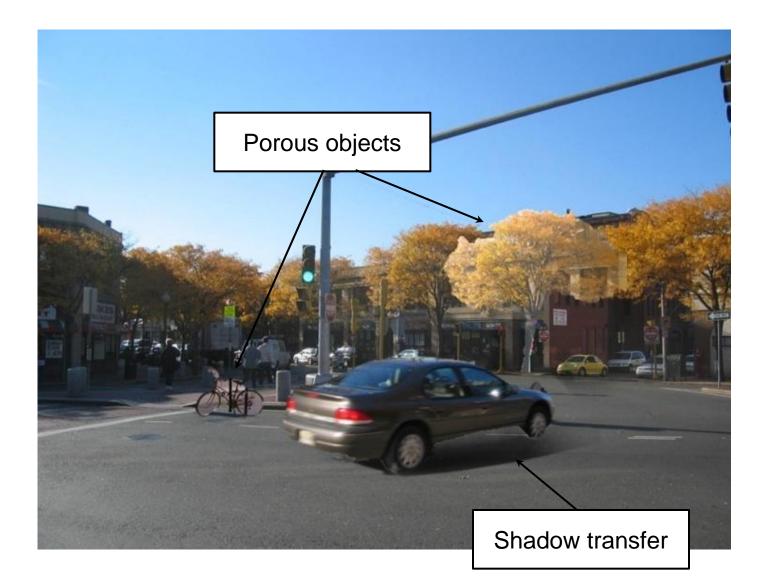
Bridge



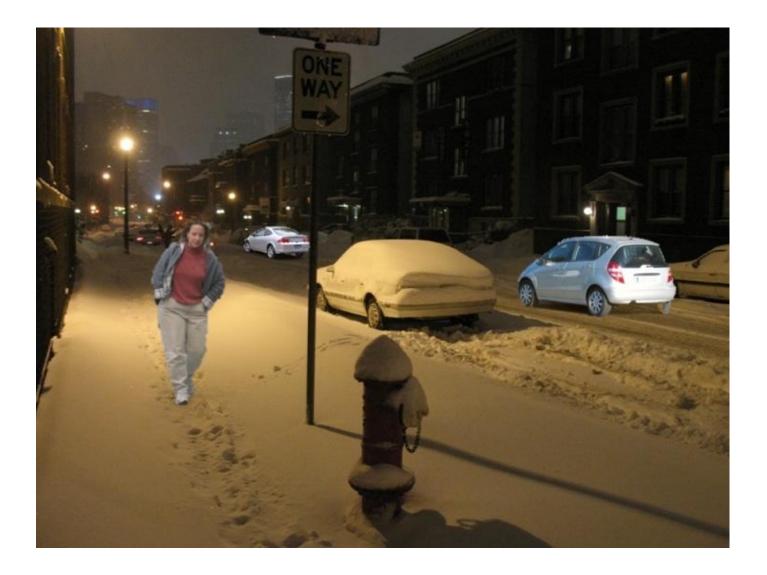
Painting



Failure cases



Failure cases



The Dangers of Data

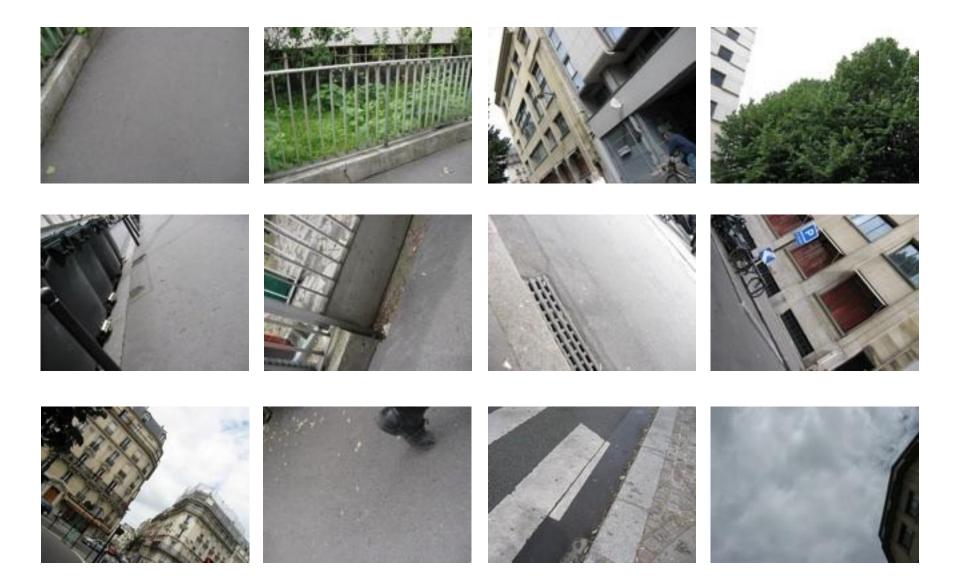
Internet is a tremendous repository of visual data (Flickr, YouTube, Picasa, etc.)

But it's not random samples of visual world Many sources of bias:

- Sampling bias
- Photographer bias
- Social bias

Flickr Paris

Real Paris

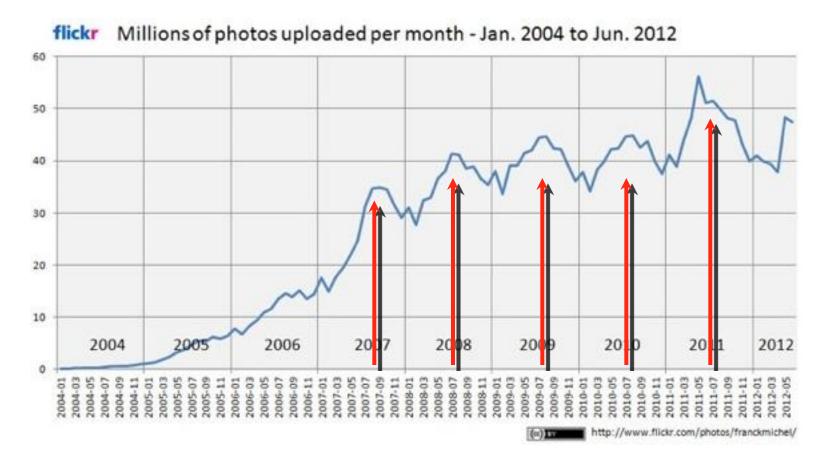


Real Notre Dame

Sampling Bias

People like to take pictures on vacation

People like to take pictures on vacation



People want their pictures to be recognizable and/or interesting

VS.

People follow photographic conventions

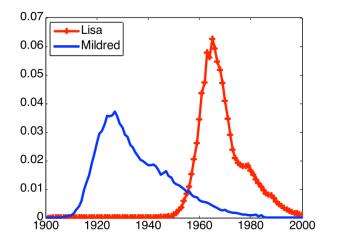
VS.

Social Bias

"100 Special Moments" by Jason Salavon

Social Bias

Mildred and Lisa



Source: U.S. Social Security Administration

Gallagher et al CVPR 2008

Social Bias

Reducing / Changing Bias

Street side Google StreetView

Satellite google.com

Webcams

Autonomous capture methods can reduce / change bias

- But it won't go away completely
- Sometimes you can just pick your data to suit your problem, but not always...

Overview

