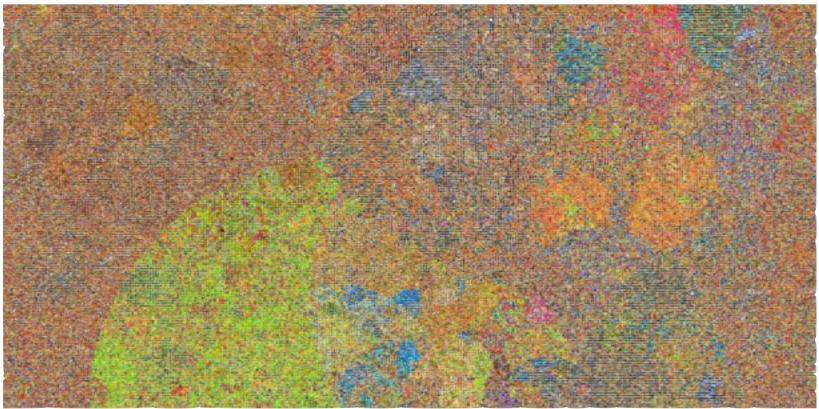
Previous Lecture - Coded aperture photography

Depth from a single image based on the amount of blur

Estimate the amount of blur using and recover a sharp image by deconvolution with a sparse gradient prior.

Visual Data on the Internet



Visualization of 53,464 english nouns, credit: A. Torralba, http://groups.csail.mit.edu/vision/TinyImages/

With slides from Alexei Efros, James Hays, Antonio Torralba, Jean-Francois Lalonde, and Frederic Heger

CS 129: Computational Photography James Hays, Brown, Fall 2012

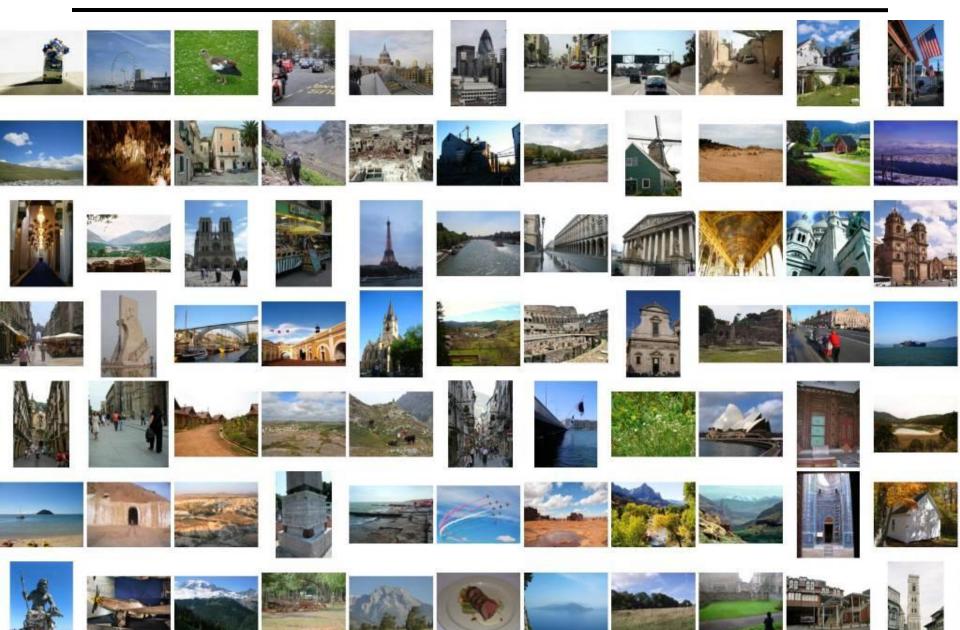
What is out there on the Internet? How do we get it? What can we do with it?

Subject-specific Data

Photos of Coliseum (Snavely et al.)

Portraits of Bill Clinton

Much of Captured World is "Generic"



Generic Data

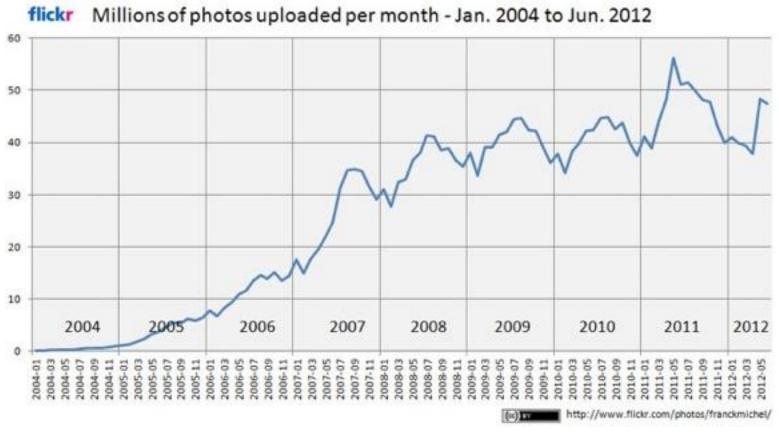
street scenes

Food plates

pedestrians

The Internet as a Data Source

How big is Flickr?



100M photos updated *daily*6B photos as of August 2011!

~3B public photos

Credit: Franck_Michel (http://www.flickr.com/photos/franckmichel/)

How Annotated is Flickr? (tag search)

Party – 23,416,126 Paris – 11,163,625 Pittsburgh – 1,152,829 Chair – 1,893,203 Violin – 233,661 Trashcan – 31,200

"Trashcan" Results

From howlinhill

From Jennay Jazz

From Norma Tub

From innincobs

From ella novak

From bertboerland

From m114dy

From <u>ccharland</u>

From walve

From Patrik Moen

From dekote morri...

From Jimetry

From PavelsDog

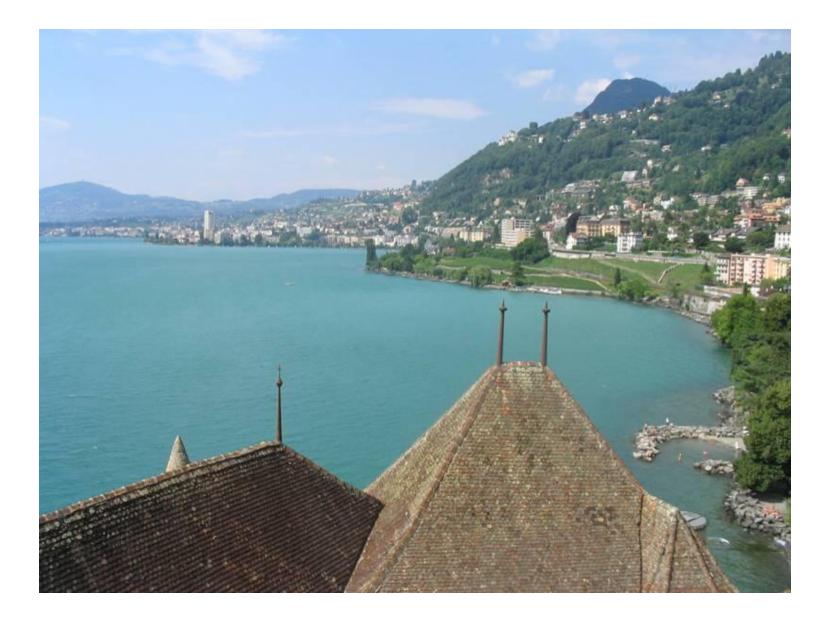
From lovecoffeey

From Docuelo

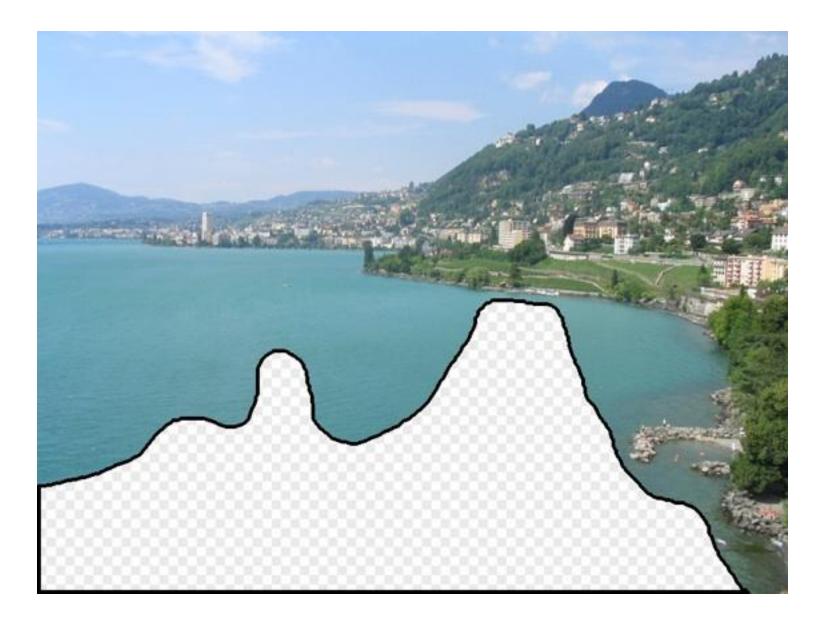
What is out there on the Internet? How do we get it? What can we do with it?

• Let's see a motivating example...

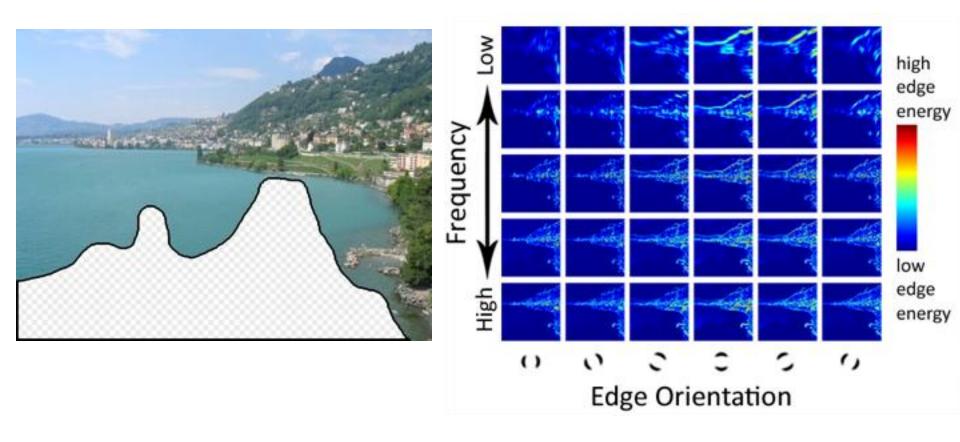
Scene Completion



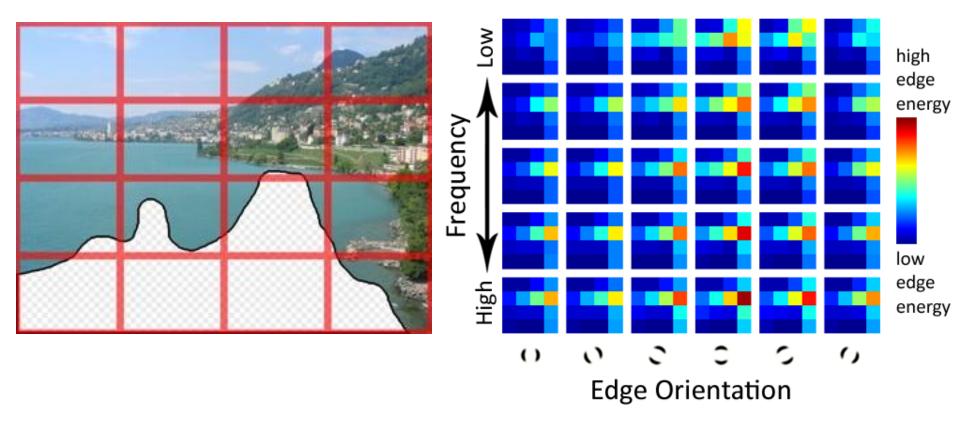
Scene Matching



Scene Descriptor

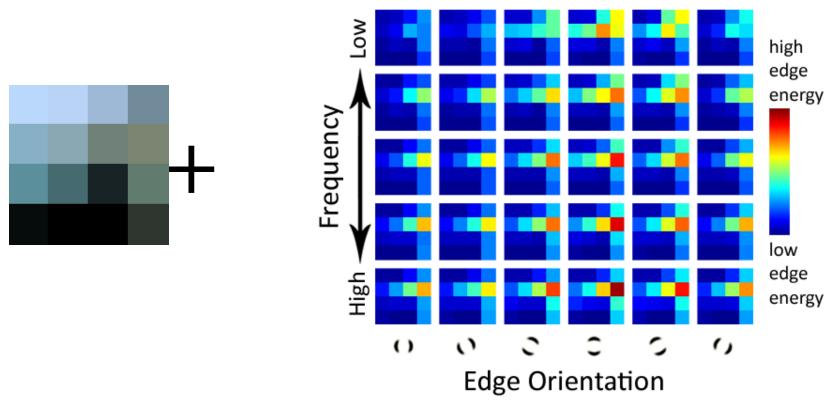


Scene Descriptor



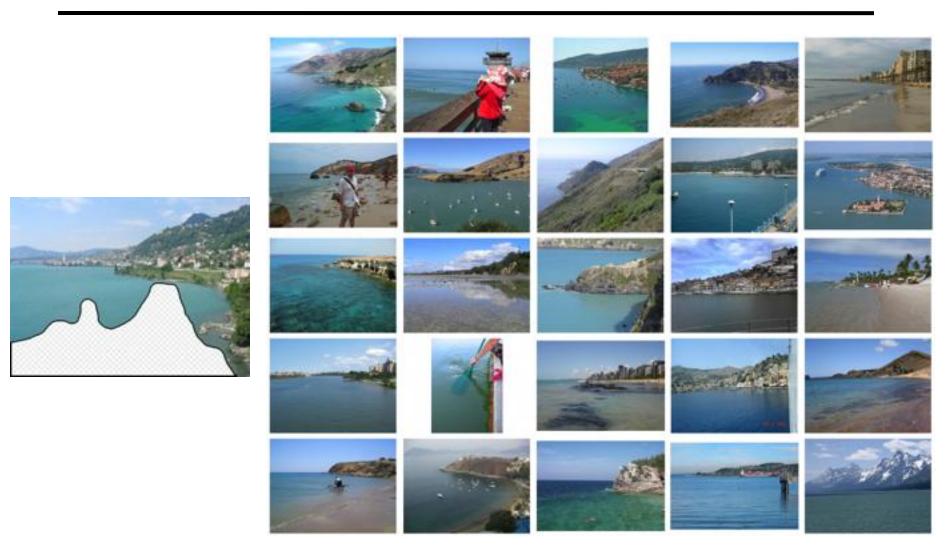
Scene Gist Descriptor (Oliva and Torralba 2001)

Scene Descriptor



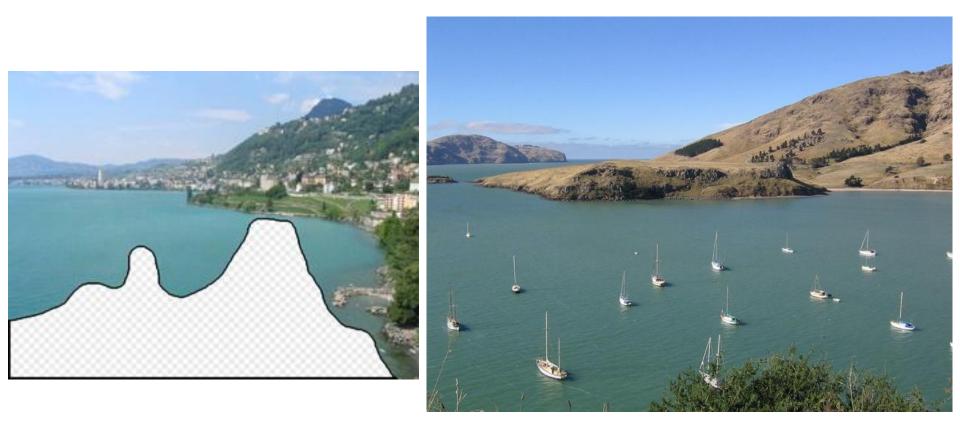
Scene Gist Descriptor (Oliva and Torralba 2001)

2 Million Flickr Images



... 200 total

Context Matching



Graph cut + Poisson blendin

Nearest neighbors from a collection of 20 thousand images

Nearest neighbors from a collection of 2 million images

"Unreasonable Effectiveness of Data"

Parts of our world can be explained by elegant mathematics

• physics, chemistry, astronomy, etc.

But much cannot

• psychology, economics, genetics, etc.

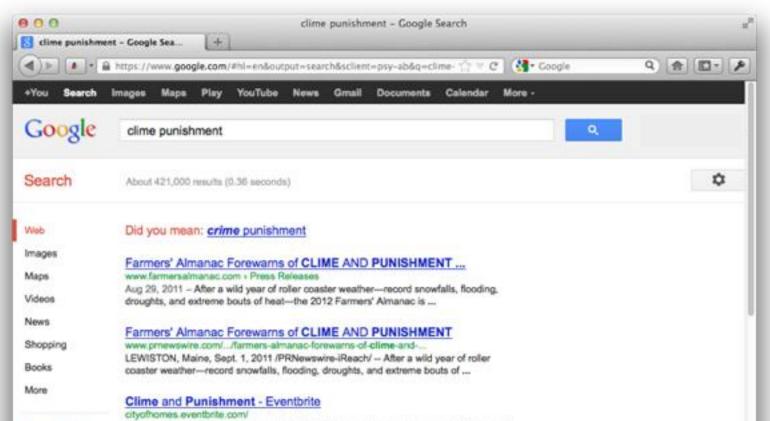
Enter The Data!

- Great advances in several fields:
 - e.g. speech recognition, machine translation
 - Case study: Google

[Halevy, Norvig, Pereira 2009]

A.I. for the postmodern world:

- all questions have already been answered...many times, in many ways
- · Google is dumb, the "intelligence" is in the data



How about visual data?

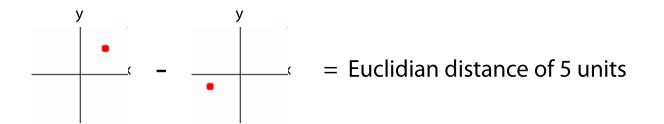
Text is simple:

- clean, segmented, compact, 1D
- Visual data is much harder:
 - Noisy, unsegmented, high entropy, 2D/3D

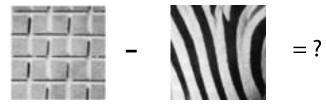
Quick Overview

- Comparing Images
- Uses of Visual Data
- The Dangers of Data

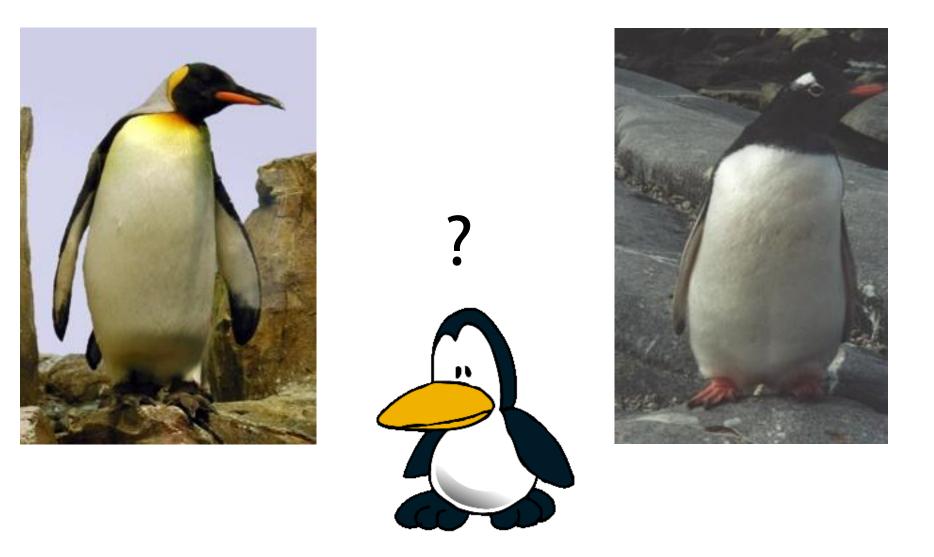
Distance Metrics



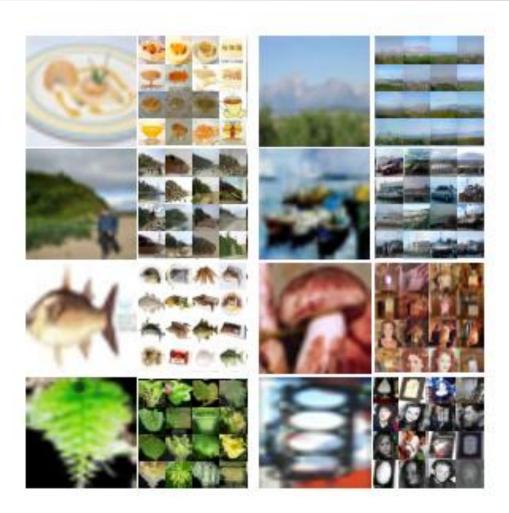
= Gray value distance of 50 values



SSD says these are not similar



Tiny Images



A. Torralba, R. Fergus, and W. T. Freeman, "80 million tiny images: a large dataset for non-parametric object and scene recognition," PAMI, 2008.

Image Segmentation (by humans)

256x256

32x32

wall-space

wndow

office

drawers

desk

windows

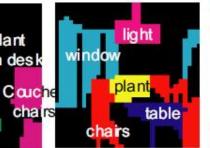
waiting area

table

plant

reception desk

dining room



dining room

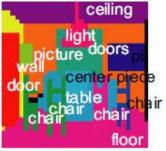
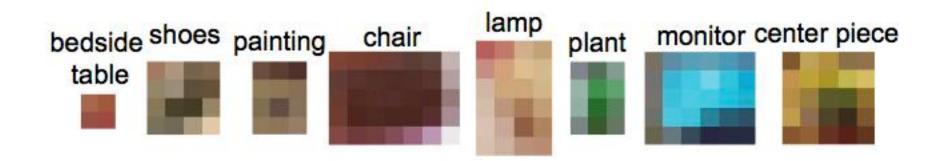
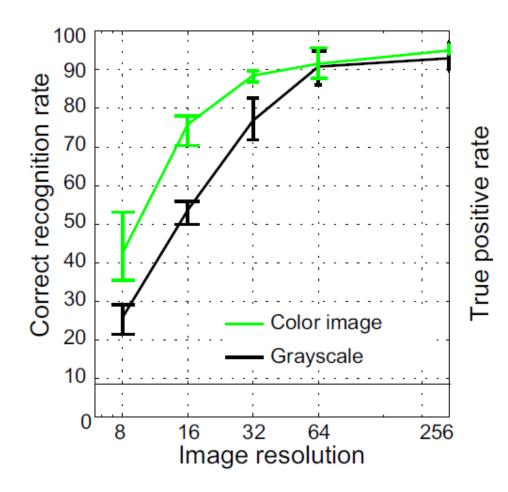


Image Segmentation (by humans)

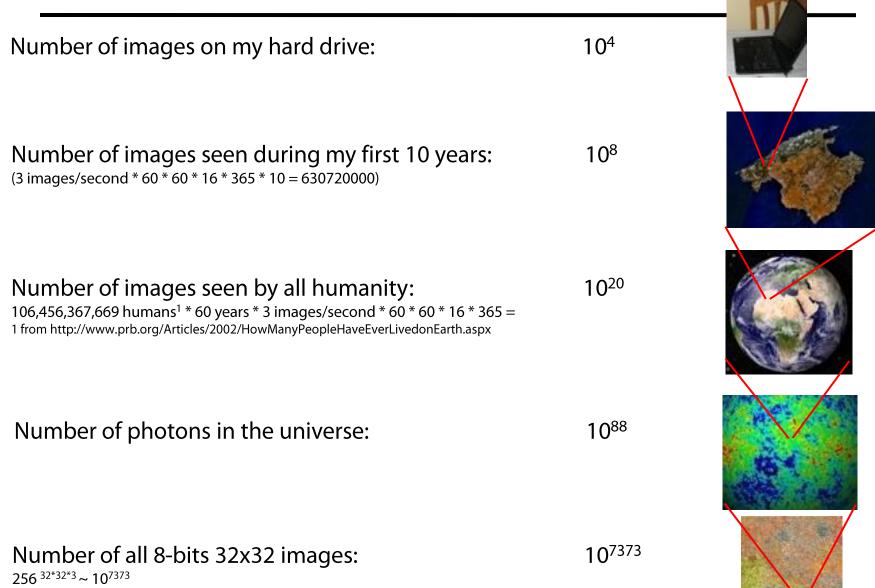


Human Scene Recognition



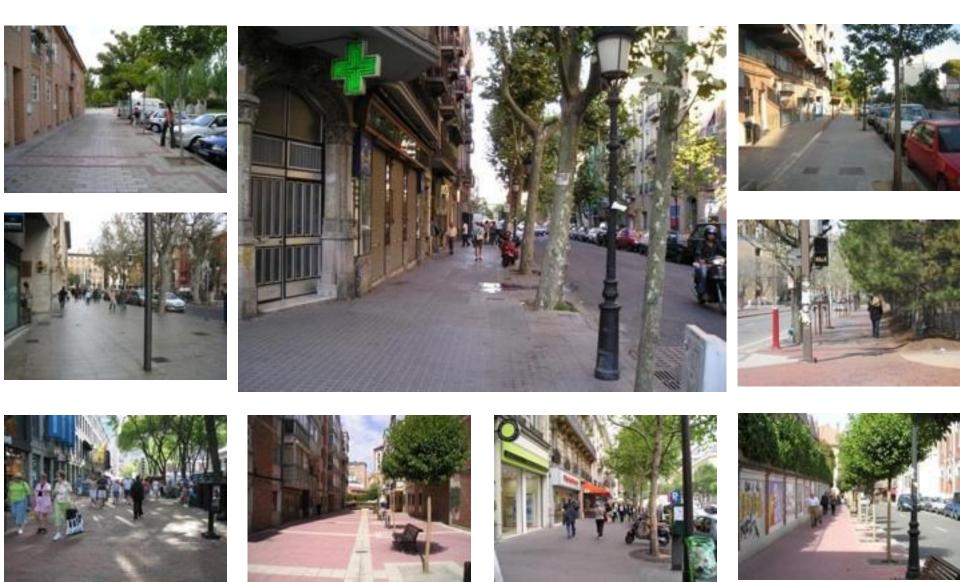
http://groups.csail.mit.edu/vision/TinyImages/

Powers of 10



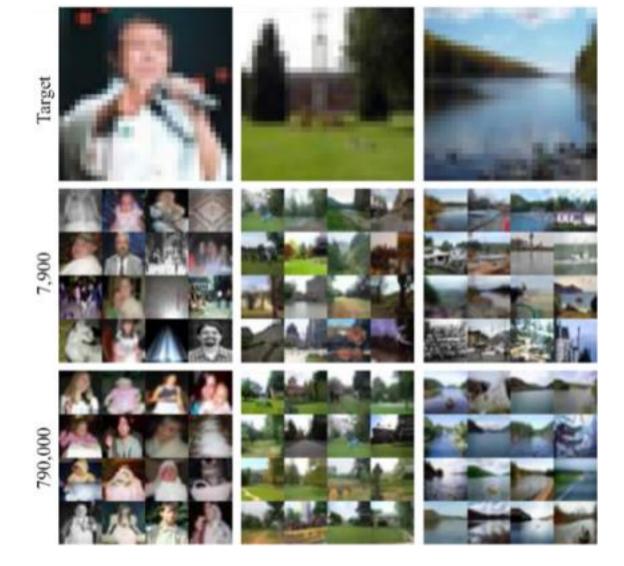
Scenes are unique

But not all scenes are so original

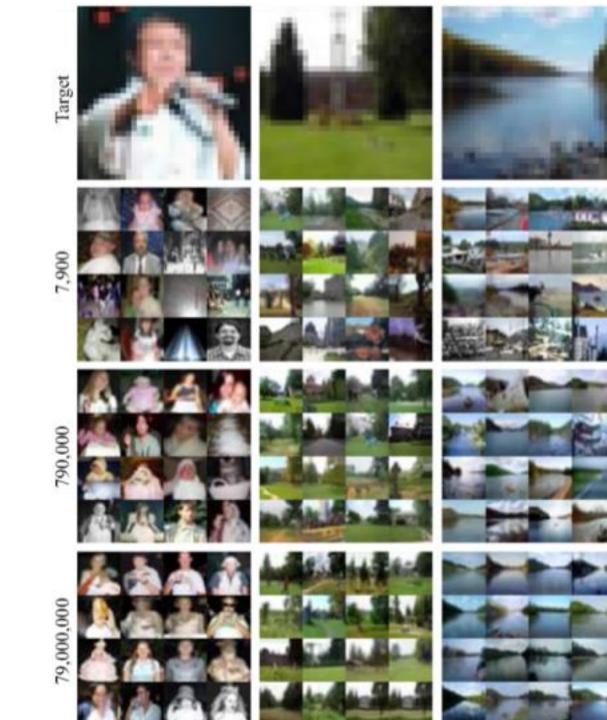


But not all scenes are so original

A. Torralba, R. Fergus, W.T.Freeman. PAMI 2008



A. Torralba, R. Fergus, W.T.Freeman. PAMI 2008



Automatic Colorization Result

Grayscale input High resolution

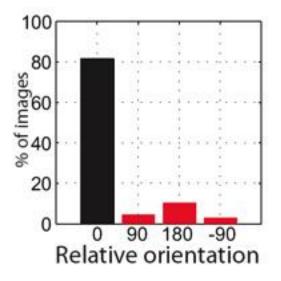
Colorization of input using average

A. Torralba, R. Fergus, W.T.Freeman. 2008

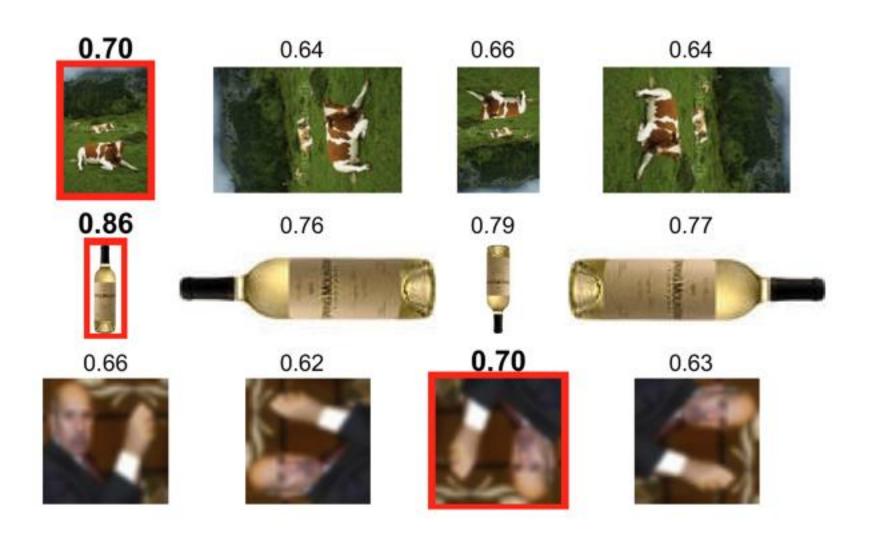
Many images have ambiguous orientation Look at top 25% by confidence

• correlation score

Examples of high and low confidence images



Automatic Orientation Examples

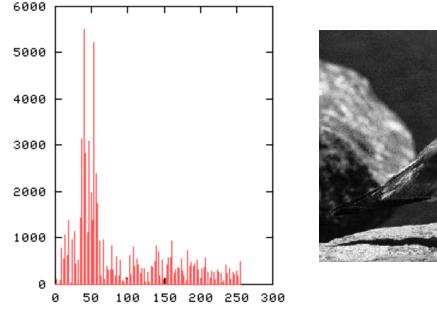


A. Torralba, R. Fergus, W.T.Freeman. 2008

Tiny Images Discussion

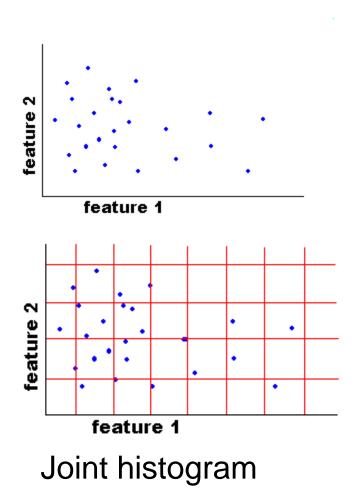
Why SSD on color images? Can we build a better image descriptor?

Images from Dave Kauchak

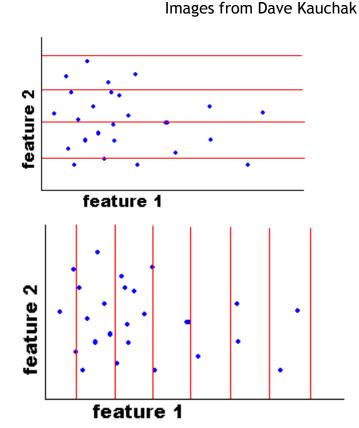


global histogram

- Represent distribution of features
 - Color, texture, depth, ...

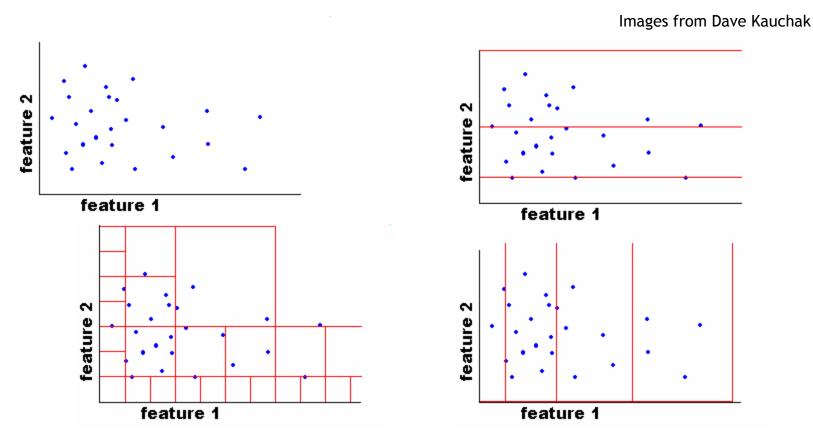


- Requires lots of data
- Loss of resolution to avoid empty bins



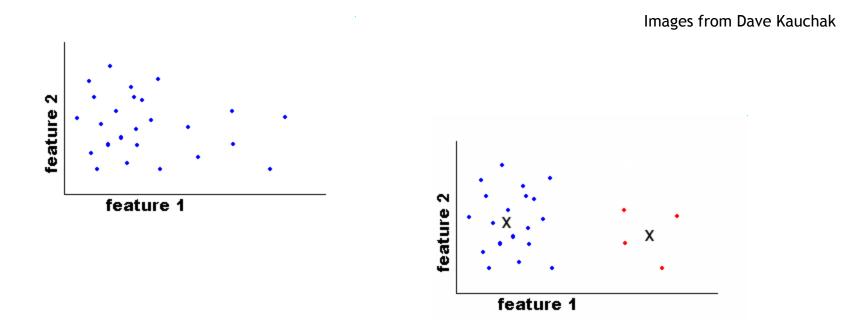
Marginal histogram

- Requires independent features
- More data/bin than joint histogram



Adaptive binning

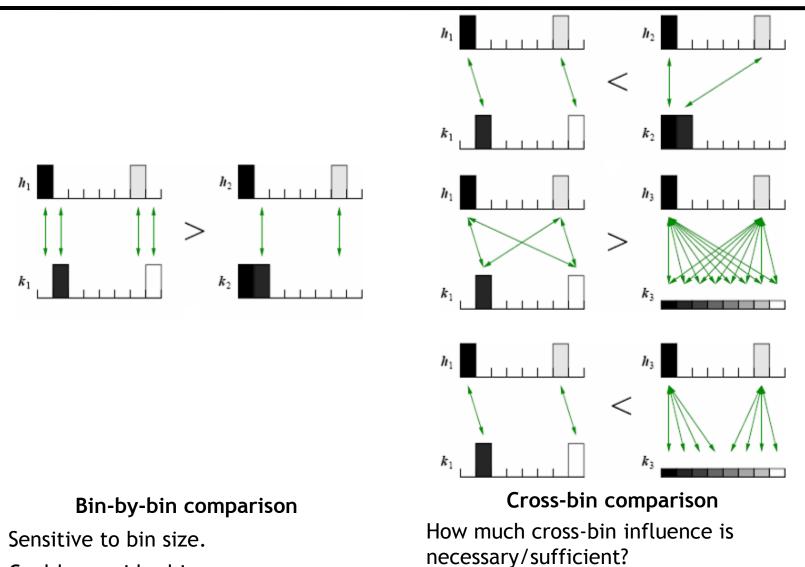
- Better data/bin distribution, fewer empty bins
- Can adapt available resolution to relative feature importance



Clusters / Signatures

- "super-adaptive" binning
- Does not require discretization along any fixed axis

Issue: How to Compare Histograms?



Could use wider bins but at a loss of resolution

Red Car Retrievals (Color histograms)

$$\chi^{2}(h_{i},h_{j}) = \frac{1}{2} \sum_{m=1}^{K} \frac{[h_{i}(m) - h_{j}(m)]^{2}}{h_{i}(m) + h_{j}(m)}$$

Histogram matching distance

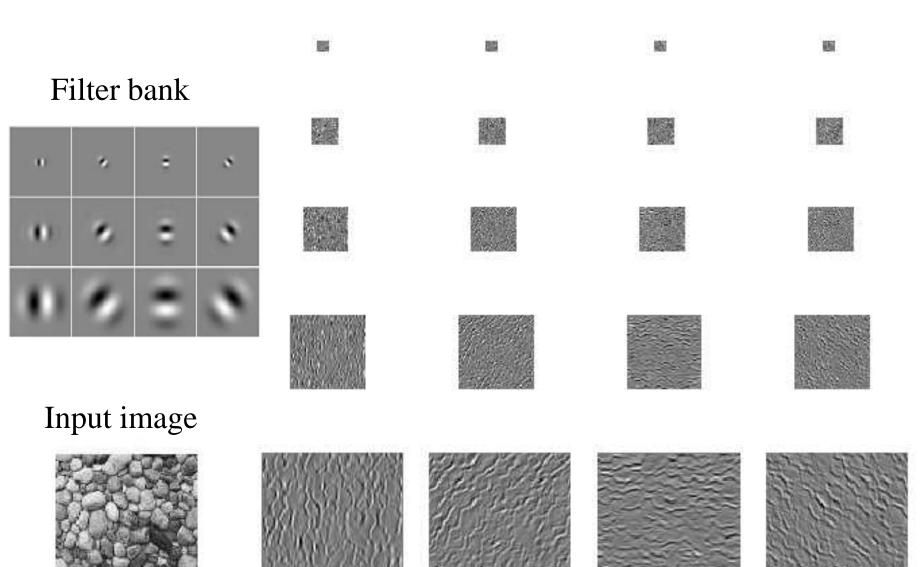
Capturing the "essence" of texture

...for real images

We don't want an actual texture realization, we want a texture invariant

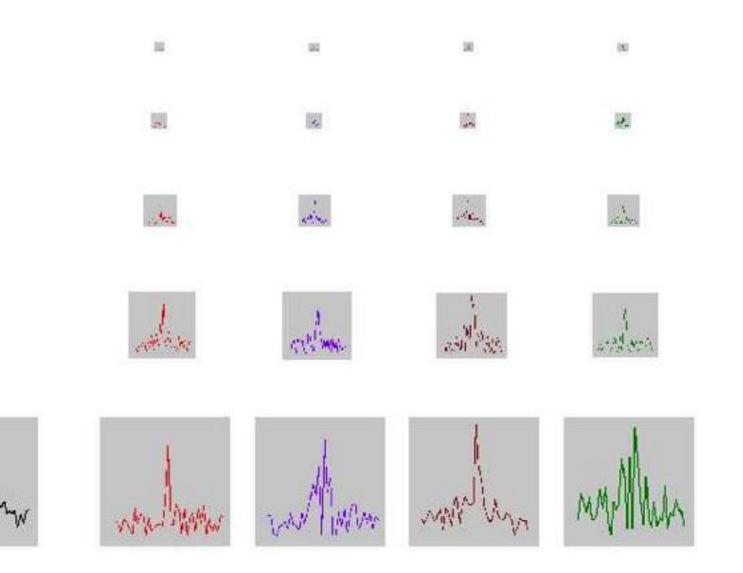
What are the tools for capturing statistical properties of some signal?

Multi-scale filter decomposition



Filter response histograms

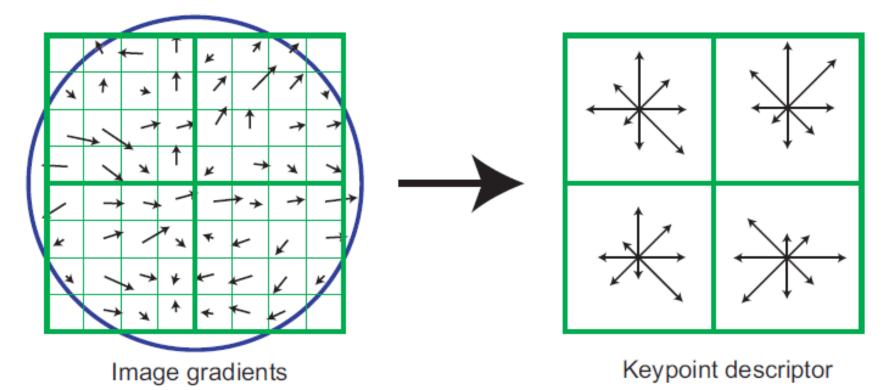
M.M



Start with a noise image as output Main loop:

- Match *pixel* histogram of output image to input
- Decompose input and output images using multi-scale filter bank (Steerable Pyramid)
- Match sub-band histograms of input and output pyramids
- Reconstruct input and output images (collapse the pyramids)

SIFT local feature descriptor

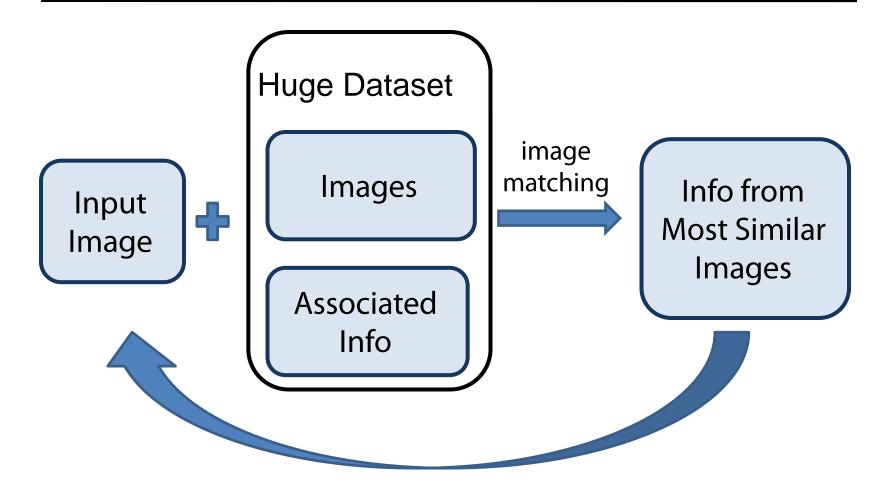


Based on 16*16 patches
4*4 subregions
8 bins in each subregion
4*4*8=128 dimensions in total

Image Descriptors

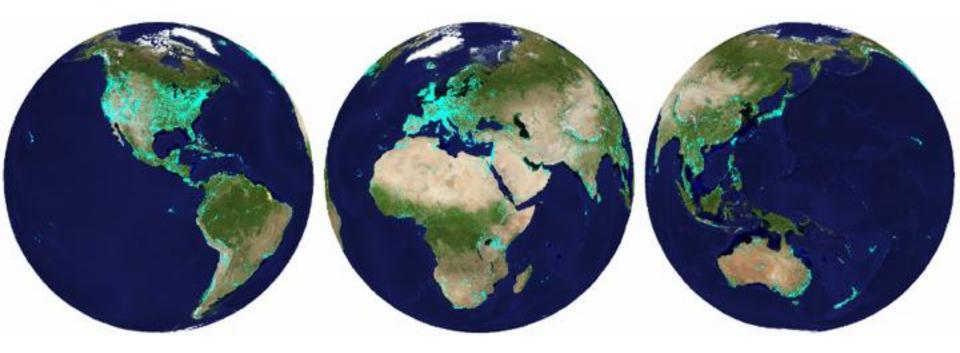
- Blur + SSD
- Gist descriptor (average edge response in a coarse spatial grid)
- Color histograms
- Filter response histograms
- "Bag of Visual Words" histograms of quantized SIFT or HOG features.

Recap: Using lots of data!



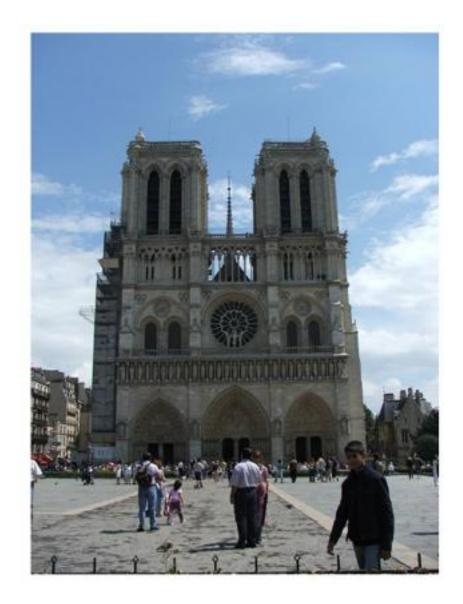
Trick: If you have enough images, the dataset will contain very similar images that you can find with simple matching methods.

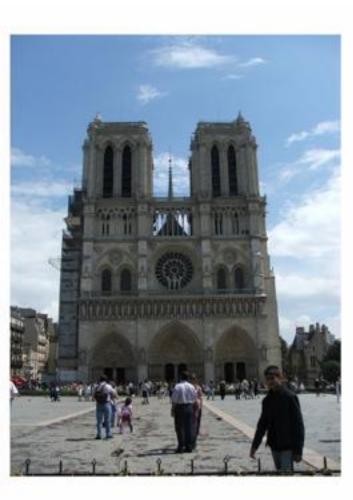
im2gps (Hays & Efros, CVPR 2008)

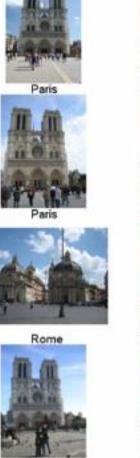


6 million geo-tagged Flickr images

How much can an image tell about its geographic location?







Paris

Paris

Paris

Paris

Poland

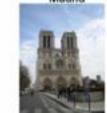
Paris

Cuba

Paris

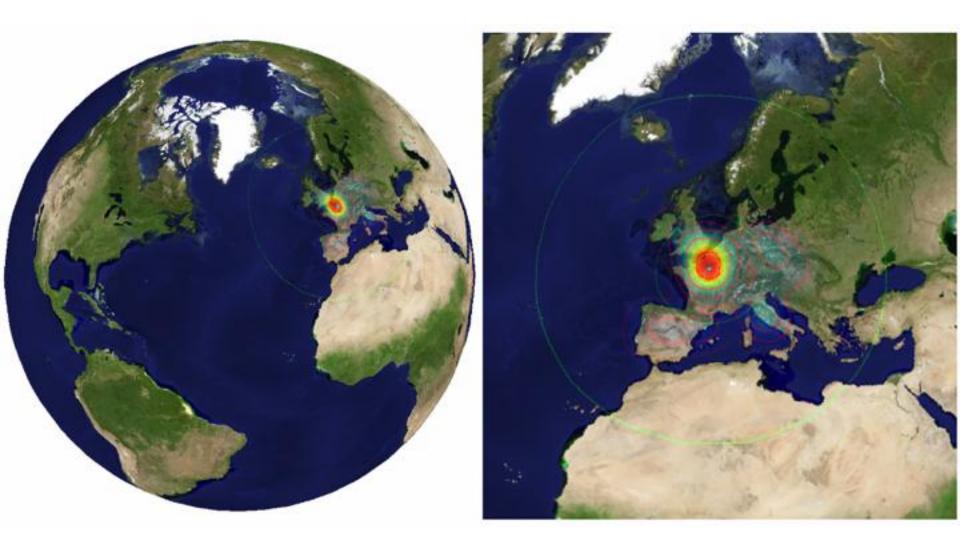
Paris

Madrid



Paris

Paris



Example Scene Matches

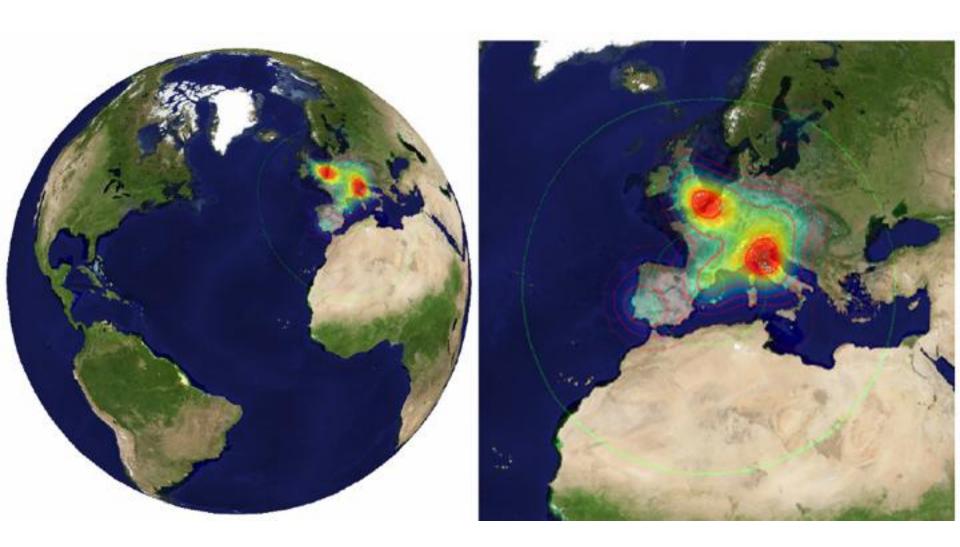
europe

Barcelona

Fabr

Austria

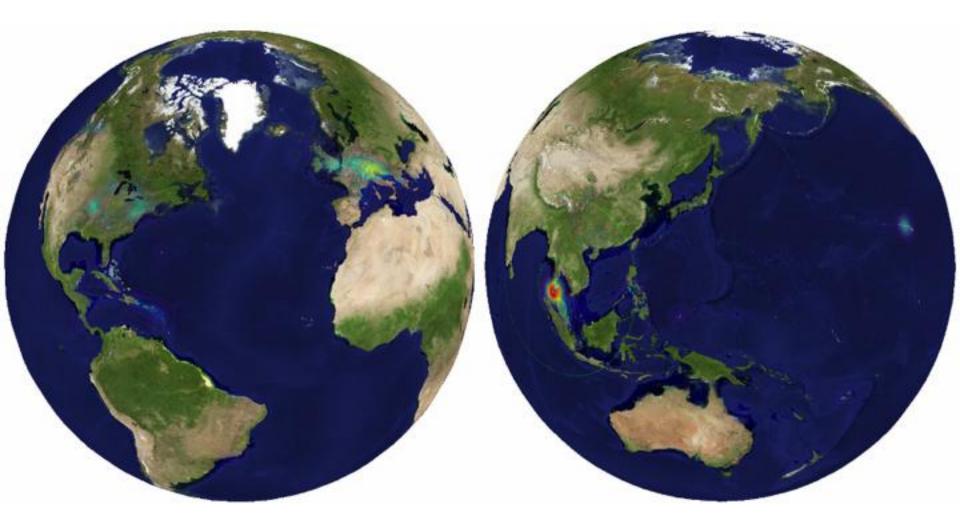
Latvia



Brazil

Thailand

Hawaii



Utah

Utah

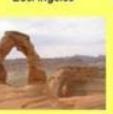
Utah

Kenya

Utah

Utah

LosAngeles



Utah



Utah

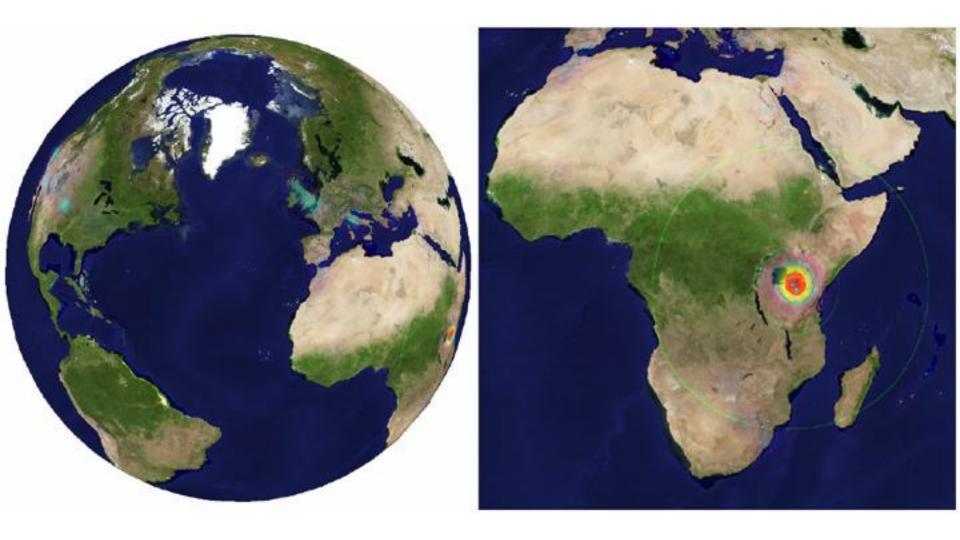
Mendoza

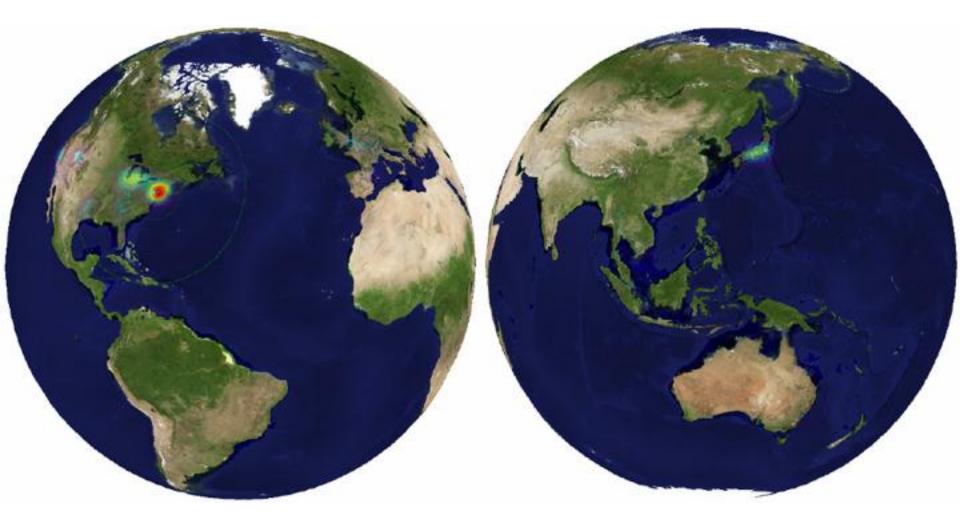
Nevada

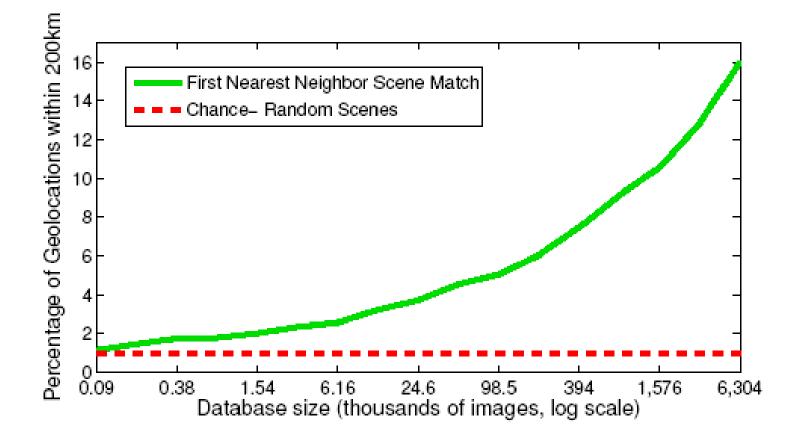
africa

Morocco

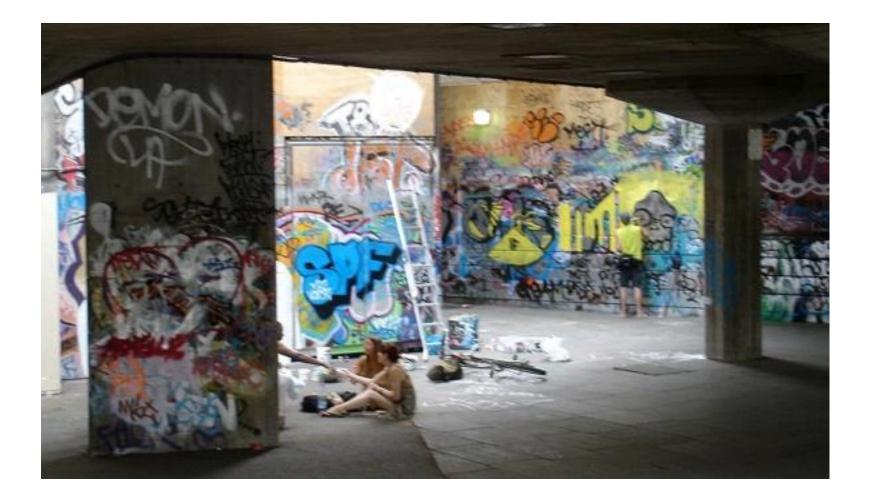
Tennessee







Where is This?



O. Vesselova, V. Kalogerakis, A. Hertzmann, J. Hays, A. A. Efros. "Image Sequence Geolocation," ICCV 2009

Where is This?

Where are These?

15:14, June 18th, 2006

16:31, June 18th, 2006

Where are These?

15:14, June 18th, 2006 16:31, 17:24, June 18th, 2006 June 19th, 2006

Results (geo-loc within 400 km)

im2gps – 10% temporal im2gps – 56%