
Separable Kernels and Edge Detection

CS1230

Disclaimer: For Filter, using separable kernels is optional. It makes your implementation
faster, but if you can’t get it to work, that’s totally fine! Just use 2D kernels instead.

SEPARABLE KERNELS

The lecture slides concerning this subject are Image Processing IV, slides 35 - 39.

Let’s start off by looking at a 2D Gaussian kernel with a standard deviation of 5
3 and width of

5:


0.018 0.031 0.037 0.031 0.018
0.031 0.052 0.062 0.052 0.031
0.037 0.062 0.074 0.062 0.037
0.031 0.052 0.062 0.052 0.031
0.018 0.031 0.037 0.031 0.018
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This is what a 2D Gaussian generally looks like (not actually this one):

Here’s what it looks like if we take the kernel and apply it to a picture of a unicorn:

This kernel is difficult to compute and also runs really slowly when we try to use it to convolve
an image, so we probably want a better solution. Good news is, there is! A Gaussian kernel is
separable. What this means is, if we break the kernel down into two 1D filters, do one pass in
the horizontal direction, and another pass in the vertical direction, we will get the exact same
result.
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This is a little easier to explain with an example. Let’s generate a 1D Gaussian again with a
standard deviation of 5

3 :

[
0.136 0.228 0.272 0.228 0.136

]
What we’re going to do is take this kernel and first apply it to our image in the horizontal
direction:

Now that the image is blurred horizontally, we’ll take this intermediate image and apply the
kernel in the vertical direction:

We can see that our resulting image is exactly the same as when we used the 2D Gaussian
kernel! We don’t necessarily have to do the passes in that specific order, either. You’re free to
do a vertical pass first, then a horizontal pass, and you’ll get the same result.
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Now, not all kernels are separable. Some kernels that are separable are box, Gaussian, and
Sobel (we will discuss this in a bit). Kernels that are not separable are cone and pyramid. You
might think that a pyramid kernel is separable into two triangle filters, but that’s not actually
the case, which you can see on slide 37 of Image Processing IV. For the purposes of Filter,
however, making two passes with a triangle filter is close enough, so feel free to do so.

EDGE DETECTION

The information in this section can be found in the Edge Detection section of the Filter assign-
ment.

Earlier, we mentioned the Sobel kernels. The Sobel kernels are two kernels that are used for
edge detection. Here’s what edge detection on our unicorn looks like:

Pretty cool, right? Here’s how we did it.

Edge detection is actually a combination of two independent convolutions! Let’s go more
in-depth as to how this works. What edge detection does is approximate the derivative of the
pixel intensities in the image. We do this once in the horizontal direction and once in the
vertical direction, then combine the two results together.

Taking derivatives of the image is actually very simple: it’s simply just applying a convolution
with a 3x3 kernel. The kernels we’re going to need are what we call the Sobel kernels:

kernelx =
1 0 −1

2 0 −2
1 0 −1

 ,kernely =
 1 2 1

0 0 0
−1 −2 −1


where kernelx is the kernel we need to get the derivative in the horizontal direction and
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kernely is the kernel we need to get the derivative in the vertical direction.

Remember what we said about separable kernels in the first section? It turns out, both kernels
are actually separable! The way we separate kernelx is:

Convolve by
[
1 0 −1

]
in the horizontal direction

Convolve by
[
1 2 1

]
in the vertical direction

And the way we separate kernely is:

Convolve by
[
1 2 1

]
in the horizontal direction

Convolve by
[
1 0 −1

]
in the vertical direction

At the end, after obtaining both resulting images, we want to combine the results together
into a single image. For each pixel, if we let Gx be the intensity in the image we used kernelx

with and let G y be the intensity in the image we used kernely with, then our intensity in the
final image will be:

G =
√

G2
x +G2

y

Let’s show each of these steps with our unicorn again! When we apply kernelx to the unicorn,
we get:

Now, we start over with the original image and apply kernely :
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And now with our two resulting images, we can combine the results:

Good luck with Filter!

No unicorns were harmed in the making of this document. Maybe.
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How to Scale 
 

Hey everyone ! It seems like there's some confusion on how to scale, so I'm gonna try to describe it a 

little here. 

 

First, we have our original source image (the pre-scaled image) and our destination image (the scaled 

image).  

 

 
Original source image 

 
1. Scale in the x-direction. This means the height of the image will remain the same (for now) 

but the width of the image will shrink/grow. 

 
Original image scaled in the x-direction 

 
2. Use the image you got from scaling in the x-direction to scale in the y-direction. 



 
X-scaled image scaled in the y-direction 

Also, our destination image! 
 
For now, we’ll just do an example about scaling in the x direction but the steps will be similar for 

scaling in the y direction. 

 

For every pixel in our x-scaled image, we want to do these following steps: 

1. Use the back map function (in lecture slides / algos) to figure out what pixel we want to 

sample from in our original image.  

○ If we are calculating the pixel value at row  and col  in our x-scaled image, then 

we use the backmapping function to find what column we want to sample from in 

our original image. For scaling in the x-direction, we sample from the same row 

in our original image, since our height hasn’t changed yet. 

(For scaling in y-direction, we would use backmapping to find the row to sample 

from.) 

○ Using the backmap function, we want to sample from row row  and column 

.a
col + 2a

1−a
  

 

2. Next, as in the algos, we place our “triangle” filter over the pixel (row , ) in oura
col + 2a

1−a
 

original image. 



 

Here, this represents the pixels of row row  in our original image.  

The red arrow is the value of , which is the center of our triangle.a
col + 2a

1−a
 

○ Though the value for the column may be fractional, we are still only sampling 

discrete pixel values.  

■ Notice how column 17 and column 22 fall out of range of our support 

width? 

 

3. Then, we will be sampling the pixels that fall underneath the triangle support width. 

○ For the image above, that would be the pixels in columns 18 to 21. 

 

4. For each pixel, we want to multiply the pixel value with the height of the triangle above 

that point.  

○ Use the equation from slide 25 in Viewing IV to figure out the height of the 

triangle for each point! 

 

5. After sampling pixels and multiplying them with the triangle height, add them up!  

○ That is the value of the pixel in (row, col) of your x-scaled image! 

■ So in our image above, that would be: 

mage(row, 8) eight mage(row, 9) eight mage(row, 0) eight mage(row, 1) eight  i 1 * h 18 + i 1 * h 19 + i 2 * h 20 + i 2 * h 21  

 

6. Continue calculating all the pixels of your x-scaled image, and you’ll have an image 

scaled in the x-direction! 

  

For scaling in the y-direction, similar steps will be applied. But make sure you backmap to the 

x-scaled image instead of the original image! 

 

Good luck with Filter! 


