
Electricity Consumption: ICA

Overview
It’s coding time!
1. We'll define a problem, design a solution, and code it up in R!
2. We'll solve it using functions, conditionals, and loops.

The Problem
Your electricity bills have been very high lately. You're worried about your environmental
impact (not to mention the financial burden!).

To find the root cause, you’ve collected a year of electricity data. A snippet looks like this:

Each row represents an hour, specified by month, day, hour, and three types of energy usage.
Measurements are reported in watt-hours (Wh).

Month Day Hour Kitchen Laundry Heating

11 26 18 12 27 1046

11 26 19 534 41 1058

11 26 20 534 0 1060

The Problem
Your goal is: for each month of your annual electricity data,
find the day and hour during which the maximum electricity was used.

Solution Steps:
1. Algorithm
2. Pseudocode
3. Code

Month Day Hour Kitchen Laundry Heating

11 26 18 12 27 1046

11 26 19 534 41 1058

11 26 20 534 0 1060

Coming up with an Algorithm

Step 1: Algorithm
Perhaps you've heard the word algorithm before, but what does it mean?

An algorithm is defined as a step-by-step procedure for converting inputs to
outputs, often to solve a problem.

A canonical example of an algorithm is a recipe. It is a step-by-step process for
converting raw ingredients into a food product.

What would be a good sequence of steps to find the solution to our problem?

Hint: Split-Apply-Combine
The split-apply-combine paradigm is very common in data science.

Indeed, to solve this problem, we must:
1. Split the data by month
2. For each month

a. Apply a function to find a day and hour during which time consumption
was maximal

3. Combine and display the results

Step 2: Pseudocode
A written description of the sequence of steps necessary to solve a problem is
pseudocode.

Here is a first attempt at pseudocode for our algorithm:

for each month
1. total the consumption (Kitchen + Laundry + Heating)
2. scan through the total consumption across days and hours
3. return the day and hour with maximal consumption

Step 2: Pseudocode
But you can also write pseudocode that looks more like real code.

For example, here is pseudocode for the function printSign(x):

 print_sign function(x):
if x is positive:

print "x is positive."
else:

print "x is negative."

Step 2: Pseudocode
Here is pseudocode for our problem that looks (a bit) more like real code:

find_max_consumption function(monthly bill):
for each month in monthly bill:
 total = Kitchen + Laundry + Heating
 index = the index of the entry in the total column with
 the maximum value
 concatenate and print month, day, and hour at this index

Coding an Algorithm

Step 3: Coding Time!
Let's try to implement this function!

We'll go through the solution with you step-by-step, so no need to rush!

Download the .csv file, and create a new Rmd or R file in the same folder as the download.

At the start of your new file, enter (or copy and paste) this code snippet:

raw_data <- read.csv(file =
'http://cs.brown.edu/courses/cs100/lectures/scripts/section4/electricity_consumption.csv')
monthly_bill <- split(raw_data, factor(raw_data$Month))

These two lines mean: import the data into raw_data, and then split raw_data into a
vector of 12 separate data frames for each month. Store the split data in monthly_bill.

The monthly_bill data type is a list.

A sequence can only hold numerics.
A vector can only hold one type of data.

A list is a collection of components of any type.

> lst <- list("Fred", "Wilma", -1, c(1,3,5,7,9))
> lst
[[1]]
[1] "Fred"
[[2]]
[1] "Wilma"
...

A refresher: Lists

As you can see list components are indexed with double brackets:

> lst[[1]]
[1] "Fred"

> lst[[4]]
[1] 1 3 5 7 9

> lst[[4]][1]
[1] 1

A refresher: Lists

You can loop through a list, just like you might loop through a sequence or a vector.

lst <- list("Fred", "Wilma", -1, c(1,3,5,7,9))
for (i in lst) {

print(i)
}

Fred
Wilma
-1
1 3 5 7 9

A refresher: Lists

which.max
Gives the index of the entry with the maximum value (not the value itself!)

max(iris$Sepal.Length) # 7.9
which.max(iris$Sepal.Length) # 32

Step 3: Coding Time!
Now, enter (or copy and paste) this code snippet:

find_max_consumption <- function(monthly_bill) {
 # TODO: insert your code here
}

find_max_consumption(monthly_bill)

Your task is to implement the find_max_consumption function. So pair with a
neighbor, and start coding! Feel free to refer back to the lectures notes on loops.

Solution

Solution
find_max_consumption <- function(monthly_bill) {
 # loop over all months
 for (i in 1:length(monthly_bill)) {

 }
}

Solution
find_max_consumption <- function(monthly_bill) {
 # loop over all months
 for (i in 1:length(monthly_bill)) {

 # save current month
 month <- monthly_bill[[i]]

 }
}

Solution
find_max_consumption <- function(monthly_bill) {
 # loop over all months
 for (i in 1:length(monthly_bill)) {

 # save current month
 month <- monthly_bill[[i]]

 # total is a new vector that adds up Kitchen, Laundry, and Heating
 total <- month$Kitchen + month$Laundry + month$Heating

 }
}

Solution
find_max_consumption <- function(monthly_bill) {
 # loop over all months
 for (i in 1:length(monthly_bill)) {

 # save current month
 month <- monthly_bill[[i]]

 # total is a new vector that adds up Kitchen, Laundry, and Heating
 total <- month$Kitchen + month$Laundry + month$Heating

 # for each month, we want to find the index of the maximum consumption
 # instead of the max function, we use which.max
 index <- which.max(total)

 }
}

Solution
find_max_consumption <- function(monthly_bill) {
 # loop over all months
 for (i in 1:length(monthly_bill)) {

 # save current month
 month <- monthly_bill[[i]]

 # total is a new vector that adds up Kitchen, Laundry, and Heating
 total <- month$Kitchen + month$Laundry + month$Heating

 # for each month, we want to find the index of the maximum consumption
 # instead of the max function, we use which.max
 index <- which.max(total)

 # display the result in month-day-hour format
 cat(i, ”-”, month$Day[index], ”-”, month$Hour[index], "\n", sep = “”)
 }
}

More than just the basics

max
First, let’s write a max function from scratch.
1. Algorithm
2. Pseudocode
3. Code

Discuss a possible algorithm, and then write pseudocode, with your neighbors.

What's going under the hood?
In the code we just wrote, we used a built-in function to find the index of the
maximal value.

index <- which.max(total)

How would you write the which.max function from scratch?

max
max function()

max = 0
for each item in vector:

if item > max:
then max = item

return max

which.max
But we really want the index of the maximum element, not the maximum value.
So now, let’s write the which.max function from scratch.

Discuss an algorithm and pseudocode with your neighbors.

Here's the pseudocode for max for your reference:

max function()
max = 0
for each item in vector:

if item > max:
then max = item

return max

max and which.max

argmax function()
max = 0
index = 0
for each item in vector:

if item > max:
then max = item
and index = the index of

 this item
return index

max function()
max = 0
for each item in vector:

if item > max:
then max = item

return index

Wrapping up
That's it for programming basics! Good work.

Next week we'll start delving into data cleaning.

Enjoy the long weekend!

Extras

dplyr Solution
find_max_consumption2 <- function(data) {

Pipeline
data %>%

}

dplyr Solution
find_max_consumption2 <- function(data) {

Pipeline
data %>%

Split: group_by
group_by(Month) %>%

}

dplyr Solution
find_max_consumption2 <- function(data) {

Pipeline
data %>%

Split: group_by
group_by(Month) %>%
Apply: new column named Total
mutate(Total = Kitchen + Laundry + Heating) %>%

}

dplyr Solution
find_max_consumption2 <- function(data) {

Pipeline
data %>%

Split: group_by
group_by(Month) %>%
Apply: new column named Total
mutate(Total = Kitchen + Laundry + Heating) %>%
Combine: top_n displays the rows corresponding

 # to the top n values in a column
top_n(1, Total)

}

dplyr Solution
> find_max_consumption2(raw_data)
A tibble: 12 x 7
Groups: Month [12]
 Day Month Hour Kitchen Laundry Heating Total
 <int> <int> <int> <int> <int> <int> <int>
 1 24 1 11 1161 2251 1042 4454
 2 7 2 14 481 2056 1046 3583
 3 8 3 11 2069 42 1024 3135
 4 12 4 20 2516 10 1112 3638
 5 10 5 16 514 2636 98 3248
 6 7 6 13 857 1088 651 2596
 7 31 7 19 408 1408 977 2793
 8 13 8 20 808 1288 755 2851
 9 12 9 22 2500 56 426 2982
10 17 10 16 1205 1686 1121 4012
11 11 11 17 594 1838 1047 3479
12 24 12 19 1908 75 1137 3120

