
Programming Basics II

Abstraction
● Copying and pasting code is something you never want to do!

● Functions are one form of abstraction that can be used in place
of copy and paste. Loops are another.

Loops

What is a loop?
● Loops are used to execute repetitive tasks.

● Loops use predicates to decide when to stop. They keep going,
as long as the predicate is TRUE, and stop when it is FALSE.

● There are many types of loops: e.g.,
○ for loops
○ while loops
○ do while loops
○ repeat until loops

While Loop
while (loop condition) {

loop body
}

A while loop executes its body while the condition is TRUE.

A while loop continues, until the condition becomes FALSE.

Example
maxCapacity <- 100
currCapacity <- 50
while (currCapacity < maxCapacity) {

currCapacity <- currCapacity + 1
}

At the start of this while loop, the room is not at its maximum capacity.

It continues to execute until the room is full.

Example
maxCapacity <- 100
currCapacity <- 200
while (currCapacity < maxCapacity) {

currCapacity <- currCapacity + 1
}

What happens now?

Example
maxCapacity <- 100
currCapacity <- 200
while (currCapacity < maxCapacity) {

currCapacity <- currCapacity - 1
}

And now?

Example
maxCapacity <- 100
currCapacity <- 50
while (currCapacity < maxCapacity) {

currCapacity <- currCapacity - 1
}

And now?

Infinite Loops
while (loop condition) {

loop body
}

A while loop never executes its body if the condition is initially FALSE.

A while loop executes forever if the condition is always TRUE. Beware!

For loop
A for loop runs for a prespecified number of times, namely the length of a vector.

Here is an example:

for (i in 1:3) { # 1:3 is a vector [1] 1 2 3
print(i)

}

1
2
3

Sequences
You can use the seq function to create a vector:

> seq(0, 1, by = 0.2) # step by 0.2
[1] 0.0 0.2 0.4 0.6 0.8 1.0

You can also generate the same sequence by specifying the number of elements:
> seq(length = 6, from = 0, by = .2)
[1] 0.0 0.2 0.4 0.6 0.8 1.0

You can also simply use :, to step by the default step size of 1:

> 0:5
[1] 0 1 2 3 4 5

Example using a sequence
for (i in seq(1, 10, by = 2)) {

print(i)
}

1
3
5
7
9

Example using a vector of strings
presidents <- c("Washington", "Adams", "Jefferson")
for (p in presidents) {

print(p)
}

Washington
Adams
Jefferson

For loop
A for loop runs for a prespecified number of times.

A for loop looks like this:

for (variable in vector) {
loop body

}

A for loop runs as many times as the length of the vector.

Variables
What if you want to compute the sum of a vector of numbers?
You can use a variable and a for loop!

sum <- 0
for (i in 1:5) {

sum <- sum + i
}

Initially, the value of sum is 0.
After running through the loop once, the value of sum is 1.
And after a second run through, it becomes 3.
By the end, it is 15.

Variables
What’s wrong with this version of the code?

for (i in 1:5) {
 sum <- 0

sum <- sum + i
}

What is the final value of sum?

In-class Activity
Write a while loop that sums the numbers from 1 to 5.

In-class Activity
Write a while loop that sums the numbers from 1 to 5.

sum <- 0
i <- 1
while (i <= 5) {
 sum <- sum + i
}
print(sum)

Yikes!!! Infinite loop!!! The print statement never executes.

In-class Activity
Write a while loop that sums the numbers from 1 to 5.

sum <- 0
i <- 1
while (i <= 5) {
 sum <- sum + i
 i <- i + 1
}
print(sum)

15

Which looping structure to use when?

for loop while loop

When you know in advance how many
times you need to iterate (i.e., repeat)

When you do not know in advance
how many times you need to iterate

When the condition is fixed in advance When the condition can change

Looking under the hood

Review
presidents <- c("Washington", "Adams", "Jefferson")
for (p in presidents) {

print(p)
}

Washington
Adams
Jefferson

Indices
You can reference the elements of a vector using their index.

> presidents <- c("Washington", "Adams", "Jefferson")

> presidents[1]
[1] “Washington”

> presidents[2]
[1] “Adams”

> presidents[3]
[1] “Jefferson”

Indices
You can also access the elements of a vector using their index within a for loop.

presidents <- c("Washington", "Adams", "Jefferson")
for (i in 1:length(presidents)) {

print(presidents[i])
}

Jefferson
Adams
Washington

Looping backwards
What if you want to loop backwards? You reverse the order of the sequence:

presidents <- c("Washington", "Adams", "Jefferson")
for (i in length(presidents):1) {

print(presidents[i])
}

Jefferson
Adams
Washington

Looping backwards
A better way, in this particular example, would be to use the rev function:

presidents <- c("Washington", "Adams", "Jefferson")
for (i in rev(presidents)) {

print(i)
}

Jefferson
Adams
Washington

Vectors are only one-dimensional data tables (a single row, or a column).
Matrices are two-dimensional data tables.

> m <- matrix(1:9, nrow = 3, ncol = 3)
[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

So they have two-dimensional indices:

> m[1, 2]
[1] 4

Matrices

Matrices can also be created by binding vectors together.
Below is an example of binding columns using cbind.

> x <- cbind(1, 1:4) > y <- cbind(x, 5:8)[, c(1, 3, 2)]
> x > y

 [,1] [,2] [,1] [,2] [,3]
[1,] 1 1 [1,] 1 5 1
[2,] 1 2 [2,] 1 6 2
[3,] 1 3 [3,] 1 7 3
[4,] 1 4 [4,] 1 8 4

Another way to create matrices

bind two column vectors bind a matrix and a vector

rearrange the order
 of the columns

Analogously, you can also use rbind to bind rows.

> x <- rbind(1, 1:4) > y <- rbind(x, 5:8)[c(1, 3, 2),]
> x > y

 [,1] [,2] [,3] [,4] [,1] [,2] [,3] [,4]
[1,] 1 1 1 1 [1,] 1 1 1 1
[2,] 1 2 3 4 [2,] 5 6 7 8
 [3,] 1 2 3 4

Another way to create matrices

Arrays are multidimensional data tables: i.e., they can store tensors.

A two-dimensional array is a matrix. A one-dimensional array is a vector.

To construct an array, you need data (e.g., 1:20) and a dimension vector (e.g., c(4, 5)).

> x <- array(1:20, dim = c(4, 5)) # Generate a 4 by 5 array.
> x

 [,1] [,2] [,3] [,4] [,5]
[1,] 1 5 9 13 17
[2,] 2 6 10 14 18
[3,] 3 7 11 15 19
[4,] 4 8 12 16 20

Arrays

> x <- array(1:20, dim = c(2, 4, 5))

> x
 , , 1

 [,1] [,2] [,3] [,4]
[1,] 1 3 5 7
[2,] 2 4 6 8

, , 2

 [,1] [,2] [,3] [,4]
[1,] 9 11 13 15
[2,] 10 12 14 16

Arrays
, , 3

 [,1] [,2] [,3] [,4]
[1,] 17 19 1 3
[2,] 18 20 2 4

, , 4

 [,1] [,2] [,3] [,4]
[1,] 5 7 9 11
[2,] 6 8 10 12

, , 5

 [,1] [,2] [,3] [,4]
[1,] 13 15 17 19
[2,] 14 16 18 20

> x <- matrix(1:10, 2)
> x
 [,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10

> y <- array(1:10, c(2, 5))
> y
 [,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10

> identical(x, y)
[1] TRUE

Matrices vs. Arrays

You can use nested loops to loop over arrays, with two different
variables, one looping over each dimension.

This is a topic for another day.

Nested Loops

A sequence can only hold numerics.
An array should hold only one type of data.

A list (in R) is a collection of components of possibly varying types:

> my_list <- list("Fred", "Wilma", -1, c(1,3,5,7,9))
> my_list
[[1]]
[1] "Fred"
[[2]]
[1] "Wilma"
...

An alternative: Lists

As you can see list components are indexed with double brackets:

> my_list[[1]]
[1] "Fred"

> my_list[[4]]
[1] 1 3 5 7 9

> my_list[[4]][1]
[1] 1

An alternative: Lists

You can loop through a list, just like you might loop through a sequence or a vector.

my_list <- list("Fred", "Wilma", -1, c(1,3,5,7,9))
for (i in lst) {

print(i)
}

Fred
Wilma
-1
1 3 5 7 9

An alternative: Lists

The Truth about Data Frames
Now we've learned about lists, we can see that data frame is actually a list:

I.e., rows that comprise variables of different types in each column.

> state <- c("ri", "ny", "nj", "ct", "ma")
> incomes <- c(40, 49, 45, 61, 64)
> accountant <- data.frame(home = state, income = incomes)
> accountant
 home income
1 ri 40
2 ny 49
3 nj 45
4 ct 61
5 ma 64

A data frame is thus like a matrix, since it is two-dimensional.

Each column is a component of a list.

Extras

Nested Loops
Just as we nested if-statements, we can nest loops!

Nested loops are particularly useful for looking through multidimensional data structures,
like vectors, matrices, and arrays.

The dim function
> x1 <- # a vector of length 100
> x2 <- # ditto
> x3 <- # ditto

> data_rows <- rbind(x1, x2, x3)
> dim(data_rows)
[1] 3 100
> dim(data_rows)[1]
[1] 3
> dim(data_rows)[2]
[1] 100

> data_cols <- cbind(x1, x2, x3)
> dim(data_cols)
[1] 100 3

Nested Loops
Recall that an array (in R) is a monomorphic matrix: i.e., all data are the same type!

Let's start by creating an empty array.

> x <- array(numeric(), dim = c(5, 5))
> x

 [,1] [,2] [,3] [,4] [,5]
[1,] NA NA NA NA NA
[2,] NA NA NA NA NA
[3,] NA NA NA NA NA
[4,] NA NA NA NA NA
[5,] NA NA NA NA NA

Nested Loops
We first loop through this array by row indices.

x <- array(numeric(), dim = c(5, 5))
for (i in 1:dim(x)[1]) { # dim(x)[1] returns the
 number of rows

 code goes here
}

Nested Loops
Then, we loop through each row by column indices.

x <- array(numeric(), dim = c(5, 5))
for (i in 1:dim(x)[1]) {
 for (j in 1:dim(x)[2]) { # dim(x)[2] returns the
 number of columns

code goes here
 }
}

Nested Loops
Here, we fill in each entry in the matrix with the product of the row and column indices.

x <- array(numeric(), dim = c(5, 5))
for (i in 1:dim(x)[1]) {
 for (j in 1:dim(x)[2]) {
 x[i, j] <- i * j # do something for each entry
 }
}

Nested Loops
The result is:

> x
 [,1] [,2] [,3] [,4] [,5]

[1,] 1 2 3 4 5
[2,] 2 4 6 8 10
[3,] 3 6 9 12 15
[4,] 4 8 12 16 20
[5,] 5 10 15 20 25

Nested Loops
Similarly you can loop through a three-dimensional array three times.

x <- array(numeric(), dim = c(5, 5, 5))
for (i in 1:dim(x)[1]) {
 for (j in 1:dim(x)[2]) {
 for (k in 1:dim(x)[3]) {
 x[i, j ,k] <- i * j * k
 }
 }
}

