Programming Basics ||

Abstraction

e Copying and pasting code is something you never want to do!

e Functions are one form of abstraction that can be used in place
of copy and paste. Loops are another.

Loops

What is a loop?

e Loops are used to execute repetitive tasks.

e Loops use predicates to decide when to stop. They keep going,
as long as the predicate is TRUE, and stop when it is FALSE.

e There are many types of loops: e.g.,
o for loops
o while loops
o do while loops
o repeat until loops

While Loop

while (loop condition) {

loop body
}

A while loop executes its body while the condition is TRUE.

A while loop continues, until the condition becomes FALSE.

Example

maxCapacity <- 100
currCapacity <- 50
while (currCapacity < maxCapacity) {

currCapacity <- currCapacity + 1

}

At the start of this while loop, the room is not at its maximum capacity.

It continues to execute until the room is full.

Example

maxCapacity <- 100

currCapacity <- 200

while (currCapacity < maxCapacity) {
currCapacity <- currCapacity + 1

}

What happens now?

Example

maxCapacity <- 100

currCapacity <- 200

while (currCapacity < maxCapacity) {
currCapacity <- currCapacity - 1

}

And now?

Example

maxCapacity <- 100

currCapacity <- 50

while (currCapacity < maxCapacity) {
currCapacity <- currCapacity - 1

}

And now?

Infinite Loops

while (loop condition) {

loop body
}

A while loop never executes its body if the condition is initially FALSE.

A while loop executes forever if the condition is always TRUE. Beware!

For loop

A for loop runs for a prespecified number of times, namely the length of a vector.

Here is an example:

for (1 in 1:3) { # 1:3 1is a vector [1] 1 2 3
print (1)

w NN

Sequences

You can use the seq function to create a vector:
> seq(0, 1, by = 0.2) # step by 0.2
[1] 0.0 0.2 0.4 0.6 0.8 1.0

You can also generate the same sequence by specifying the number of elements:
> seq(length = 6, from = 0, by = .2)
(1] 0.0 0.2 0.4 0.6 0.8 1.0

You can also simply use :, to step by the default step size of 1:
> 0:5
[1] 0 1 2 3 4 5

Example using a sequence

for (i in seqg(l, 10, by = 2)) {
print (1)

O J o1 W BB

Example using a vector of strings

presidents <- c("Washington", "Adams", "Jefferson")
for (p 1n presidents) {

print (p)
}

Washington
Adams
Jefferson

For loop

A for loop runs for a prespecified number of times.
A for loop looks like this:

for (wvariable in wvector) {
loop body
}

A for loop runs as many times as the length of the vector.

Variables

What if you want to compute the sum of a vector of numbers?
You can use a variable and a for loop!

sum <- 0
for (1 in 1:5) {
sum <- sum + 1

}

Initially, the value of sum is O.

After running through the loop once, the value of sum is 1.
And after a second run through, it becomes 3.

By the end, it is 15.

Variables

What’s wrong with this version of the code?

for (1 in 1:5) {
sum <- 0

sum <- sum + 1

}

What is the final value of sum?

In-class Activity

Write a while loop that sums the numbers from 1 to 5.

In-class Activity

Write a while loop that sums the numbers from 1 to 5.

sum <- 0

1 <=1

while (1 <= 5) {
sum <- sum + 1

}

print (sum)

Yikes!!!' Infinite loop!!! The print statement never executes.

In-class Activity

Write a while loop that sums the numbers from 1 to 5.

sum <- 0

i <=1

while (1 <= 5) {
sum <- sum + 1
i <=1+ 1

}

print (sum)

15

Which looping structure to use when?

for loop while loop

When you know in advance how many | When you do not know in advance
times you need to iterate (i.e., repeat) how many times you need to iterate

When the condition is fixed in advance | When the condition can change

Looking under the hood

Review

presidents <- c("Washington", "Adams", "Jefferson")
for (p 1n presidents) {

print (p)
}

Washington
Adams
Jefferson

Indices

You can reference the elements of a vector using their index.

> presidents <- c("Washington", "Adams", "Jefferson")

> presidents[1l]
[1] “Washington”

> presidents[2]
[1] “Adams”

> presidents[3]
[1] “Jefferson”

Indices
You can also access the elements of a vector using their index within a for loop.

presidents <- c("Washington", "Adams", "Jefferson")
for (1 in l:length(presidents)) {

print (presidents[1])

}

Jefferson

Adams
Washington

Looping backwards

What if you want to loop backwards? You reverse the order of the sequence:

presidents <- c("Washington", "Adams", "Jefferson")
for (i in length(presidents) :1) {
print (presidents[i])

}

Jefferson

Adams
Washington

Looping backwards

A better way, in this particular example, would be to use the rev function:

presidents <- c("Washington", "Adams", "Jefferson")
for (i in rev(presidents)) {

print (i)
}

Jefferson

Adams
Washington

Matrices

Vectors are only one-dimensional data tables (a single row, or a column).
Matrices are two-dimensional data tables.

> m <- matrix(l:9, nrow = 3, ncol = 3)
[,1] [,2] [,3]

(1,] 1 4 7

(2,] 2 5 8

[3,] 3 6 9

So they have two-dimensional indices:

Another way to create matrices

Matrices can also be created by binding vectors together.

Below is an example of binding columns using cbind. rearrange the order
of the columns
> X <- cbind (1, 1:4) > y <- cbind(x, 5:8)[, c(1, 3, 2)]
bind two column vectors bind a matrix and a vector
> X >y
[,1] [,2] [,11 [,2] [,3]
[1,] 1 1 [1,] 1 5 1
[2,] 1 2 [2,] 1 0 2
[3,] 1 3 [3,] 1 7 3
[4,] 1 4 (4,] 1 8 4

Another way to create matrices

Analogously, you can also use rbind to bind rows.

> x <- rbind (1, 1:
> X

[,1]1 [,2] [,3]
[1,] 1 1 1
[2,] 1 2 3

4)

> y <- rbind(x,

>y

5:

Arrays

Arrays are multidimensional data tables: i.e., they can store tensors.
A two-dimensional array is a matrix. A one-dimensional array is a vector.

To construct an array, you need data (e.g., 1 : 20) and a dimension vector (e.g., c (4, 5)).

> x <- array(1:20, dim = c(4, 5)) # Generate a 4 by 5 array.
> X

[,11 0,21 [,31 [,4] [,3]
[1,] 1 5 9 13 17
[2,] 2 6 10 14 18
[3,] 3 7 11 15 19
[4,] 4 8 12 16 20

Arrays

> x <- array(1:20, dim = c(2, 4, 5)) (1,1 17 19 1 3
(2,7 18 20 2 4
> X

14 14 l 14 14 4
[,1] [,2] [,3] [,4] [,1] [,2] [,3] [,4]
(1,] 1 3 5 7 (1,] 5 7 9 11
12,] 2 4 6 8 (2,] 6 8 10 12

14 14 2 14 14 5
[,1] [,2] [,3] [,4] [,1] [,2] [,3] [,4]
(1,] 9 11 13 15 (1,7 13 15 17 19
(2,7 10 12 14 16 (2,17 14 16 18 20

Matrices vs. Arrays

> X <- matrix(1:10, 2)
> X

> vy <- array(1:10, c(2, 5))
>y

> i1dentical (x, V)

Nested Loops

You can use nested loops to loop over arrays, with two different
variables, one looping over each dimension.

This is a topic for another day.

An alternative: Lists

A sequence can only hold numerics.
An array should hold only one type of data.

A list (in R) is a collection of components of possibly varying types:

> my list <- 1list ("Fred", "Wilma", -1, c(1,3,5,7,9))
> my list

An alternative: Lists

As you can see list components are indexed with double brackets:

> my list[[1]]
[1] "Fred"

> my list[[4]]
(1] 1 3 5 7 9

> my list[[4]][1]
[1] 1

An alternative: Lists

You can loop through a list, just like you might loop through a sequence or a vector.

my list <- list("Fred", "Wilma", -1, c(1,3,5,7,9))
for (1 1in 1st) {

print (1)
}

Fred
Wilma

-1

1 3579

The Truth about Data Frames

Now we've learned about lists, we can see that data frame is actually a list:
l.e., rows that comprise variables of different types in each column.

> state <- ¢ ("r1i", "ny", "n3j", "ct", "ma")

> incomes <- c (40, 49, 45, 61, 64)

> accountant <- data.frame (home = state, income = incomes)
> accountant

home income

1 ri 40
2 ny 49
3 nj 45
4 ct 61
5 ma 64

Extras

Nested Loops

Just as we nested if-statements, we can nest loops!

Nested loops are particularly useful for looking through multidimensional data structures,
like vectors, matrices, and arrays.

The dim function

> x1 <- # a vector of length 100
> x2 <- # ditto
x3 <- # ditto

V

> data rows <- rbind(xl, x2, x3)
> dim(data rows)

[1] 3 100

> dim(data rows) [1]

[1] 3

> dim(data rows) [2]

[1] 100

> data cols <- cbind(xl, x2, x3)
> dim(data_ cols)
[1] 100 3

Nested Loops

Recall that an array (in R) is a monomorphic matrix: i.e., all data are the same type!

Let's start by creating an empty array.

> x <- array(numeric(), dim = c(5, 5))
> X
[,1] [,2] [,3] [,4] [,5]
[1,] NA NA NA NA NA
[2,] NA NA NA NA NA
[3,] NA NA NA NA NA
(4,] NA NA NA NA NA
[5,] NA NA NA NA NA

Nested Loops

We first loop through this array by row indices.

x <- array(numeric(), dim = c(5, 5))

)
for (1 in l:dim(x)[1]) { # dim(x) [1] returns the
number of rows

Nested Loops

Then, we loop through each row by column indices.
x <- array (numeric (),
for (1 in l:dim(x) [1]

for (73 in l:dim(x) [

dim = c (5, 5))
{

)
21) | # dim(x) [2] returns the
number of columns

Nested Loops

Here, we fill in each entry in the matrix with the product of the row and column indices.

dim = c (5, 5))
) A
2]) A

x <- array (numeric (),
for (1 in l:dim(x) [1]

for (73 in l:dim(x) [
]

x[i, j] <= 1 * # do something for each entry

Nested Loops

The result is:

5
10
15
20

r —

—_ e e

12
16

20

12
15

25

Nested Loops

Similarly you can loop through a three-dimensional array three times.

x <- array(numeric(), dim = c(5, 5, 5))
for (1 in l:dim(x)[1]) {
for (j in 1l:dim(x) [2]) {
for (k in l:dim(x) [3]) {
x[1i, J ,k] <=1 * J * k

