
Programming Basics I

Plan for the week
● M: Functions and Conditionals (if and if else)

● W: Loops (for and while)

● F: Section
○ Programming practice

Abstraction
● Copying and pasting code is something you never want to do!

● Functions are one form of abstraction that can be used in place
of copy and paste. Loops are another.

Functions

What is a function?
In spreadsheets, we learned about formulas, like

AVERAGE, MAX, CONCATENATE, and VLOOKUP.

In R, we learned about dplyr, which has functions, like

select, filter, arrange, mutate, and group_by.

These are all "built-in" functions, meaning they have been written for you.

But you can also write your own functions, to perform tasks unique to your data.

Example: Function Definition

erin <- function() {
"Hi Erin! You’re the best!"

}

erin <- function() {
"Hi Erin! You’re the best!"

}

Function name Declaring your function

Defining your function

You declare a function by writing <- function()

The code between the {} brackets is called the body of the function.

The body is where you define your function.

Assignment operator

Example: Function Definition

Example: Function Definition
erin <- function() {

"Hi Erin! You’re the best!"
}

Example: Function Application
> erin()
[1] "Hi Erin! You’re the best!"

Another example: Function Definition

anna <- function() {
"Hi Anna! You’re REALLY the best!"

}

Abstraction
erin <- function() {

"Hi Erin! You’re the best!"
}

anna <- function() {
"Hi Anna! You’re REALLY the best!"

}

These functions are
REALLY similar.

Can we generalize
somehow?

Generalizing code
for easy reuse is
called abstraction!

Abstraction
TA <- function(name) {

paste("Hi ", name, "! You’re the best!")
}

Abstraction is a really important concept in programming. You never want to
copy-and-paste code. You want to write general code that can be reused.

name is a parameter, a.k.a. an argument, on which the function depends.

TA can be called with any string as an input:
e.g., TA("Erin") or TA("Anna")

parameter

Built-in function

Abstraction
paste("Hi ", name, "! You’re the best!")

Built-in function

Example: Function Application
> paste("Hi ", "Erin", "! You’re the best!")
[1] "Hi Erin ! You’re the best!"

> paste("Hi ", "Anna", "! You’re the best!")
[1] "Hi Anna ! You’re the best!"

Abstraction
paste("Hi ", name, "! You’re the best!", sep = "")

Built-in function

Example: Function Application
> paste("Hi ", "Erin", "! You’re the best!")
[1] "Hi Erin! You’re the best!"

> paste("Hi ", "Anna", "! You’re the best!")
[1] "Hi Anna! You’re the best!"

Abstraction
TA <- function(name) {

paste("Hi ", name, "! You’re the best!", sep = "")
}

Example: Function Application
> TA("Erin")
[1] "Hi Erin! You’re the best!"

> TA("Anna")
[1] "Hi Anna! You’re the best!"

Built-in function

Input from the Console

Input from the console
readline(prompt = "Enter Name: ")

readline is a built-in function that gets input from the console and displays it.

prompt = "Enter Name: " is a named parameter of readline.

Input from the console
enterName <- function() {
 readline(prompt = "Enter Name: ")
}

> enterName()
Enter Name: Juho
[1] "Juho"

> enterName
function {

...
}

enterName <- function() {
 name <- readline(prompt = "Enter Name: ")
 return(name)
}

Run the following in an R Script or R Markdown

> paste("Hello, ", enterName(), "!")

Enter Sarah from the console, and R will display Hello, Sarah!

Input from the console

Function Composition
> TA(enterName())

What do you think this composition of function calls will do?

Pro-Tip: Always use informative names for functions and variables!

> TA(enterName())
Enter Name: Will
[1] Hi Will! You’re the best!

Function Composition

Scope

Local and Global Variables
printNumber <- function() {

var1 <- 1
print(var1)

}

var1 is a local variable, a variable declared inside a function.
Because it is "local" to the function, it does not exist outside the function.

> print(var1)
[1] Error: object 'var1' not found
> printNumber()
[1] 1

Local and Global Variables
var2 <- 2
printNumber <- function() {

print(var2)
}

var2 is a global variable, a variable declared outside a function.
Because it is "global," it can be accessed both inside and outside the function.

> print(var2)
[1] 2
> printNumber()
[1] 2

Local and Global Variables
xSquared <- function(num) {
 num * num
}

num is a local variable, so it cannot be accessed outside xSquared

> print(num)
[1] Error: object 'num' not found

> xSquared(5)
[1] 25

Local and Global Variables
num <- 10
xSquared <- function(num) {
 num * num
}

num is both a local and a global variable, so it can be accessed outside xSquared

> print(num)
[1] 10

> xSquared(num)
[1] 100

Local and Global Variables
num <- 10
xSquared <- function(num) {
 print(num)
 num * num
}

num is both a local and a global variable, so it can be accessed inside xSquared

> xSquared(num)
[1] 10
[1] 100

Conditionals

So far, you learned about writing your own functions, a form of abstraction that allows you

to perform the same task on different inputs in a clear and concise manner.

Now, suppose you want to perform different tasks under different conditions.

For example, what if you want to do something different for different ranges of numbers?

E.g., one thing for those between -1 and 1, and another, for those between 1 and 100.

How can you write functions that make decisions based on these predicates?

Introducing, conditionals!

Up next: Conditionals

Logicals
Logicals are one of the basic R data types.

They are either TRUE or FALSE.

In other programming languages, logicals are called booleans.

Relational Operators
When we compare data, we uncover a relationship
between them.

A predicate evaluates a relation, as a logical,
so either TRUE or FALSE.

3 > 2 is an example of a predicate
“David” < “Shivani” is as well

Relational operators build predicates.

The most common relational operators are:
== != < > <= >=

Operator Meaning

== equal to

!= not equal to

< less than

> greater than

<= less than or
equal to

>= greater than
or equal to

Logical Operators
We use logical operators to link predicates.

> x <- TRUE
> y <- FALSE

> !x
FALSE
> x && y
FALSE
> x || y
TRUE

Operator Meaning

! NOT

&& AND

|| OR

Logical Operators
Element-wise AND and OR can be applied to logical vectors.

> x <- c(TRUE, FALSE, 0, 10)
> y <- c(FALSE, TRUE, FALSE, TRUE)

> x & y
FALSE FALSE FALSE TRUE

> x | y
TRUE TRUE FALSE TRUE

NOTE: 0 is FALSE, and all non-zero numeric values are TRUE.

Operator Meaning

& Element-wise AND

| Element-wise OR

Missing Values
Sometimes, a vector might be missing values.

How can we find out if we have such faulty data?

We use is.na(), which returns a logical vector of the same length as its input.
The entry in the output vector is FALSE wherever there is a missing value.

> is.na(c(1, NA, 2))
FALSE TRUE FALSE

If Statement
We use conditionals to make decisions based on
predicate values.

In R, the syntax for conditionals is an if-else
statement:

if (predicate) {
Something happens

} else {
Something else happens

}

Example
The clause in an if statement is executed only when the predicate is true.

x <- 1

if (x < 0) {
 # This code is not executed

print(“x is negative”)
}

if (x > 0) {
 # This code IS executed

print(“x is positive”)
}

If-Else Example
The else clause is executed when the predicate is false.

x <- 1

if (x < 0) {
 print(“x is negative”)
} else {
 print(“x is greater than or equal to 0”)
}

If-Else Example
You can include as many else clauses as you like.

if (x > 0) {
 print(“x is greater than 0”)
} else if (x == 0) {
 print(“x is equal to 0”)
} else {
 print(“x is less than 0”)
}

Another Example
You can combine predicates in conditionals using logical operators.

x <- 1
if (x > 0 && !x == 0) {

print(“x is positive, and x is not 0”)
}

Nested If-Else Statements
You can also nest if-else statements inside one another:

if (x > 0) {
if (x < 10) {
 print("x is greater than 0 and less than 10")
} else {
 print("x is greater than or equal to 10")
}

}

Switch Statement
If you have multiple predicates to test, it might be too much work to write if and

else-if statements for each one. In this case, you can use a switch statement:

a <- 10
b <- 10

symbol <- readline(prompt = "Enter an ARITHMETIC OPERATOR: ")

switch(symbol,

 "+" = print(a + b),

 "-" = print(a - b),

 "*" = print(a * b),

 "/" = print(a / b))

Next time: Repetitive tasks
Today, you saw examples of conditionals.

You can use them to write code to perform a task when a condition is met.

What if you want to execute a task many many times, so long as a condition is met?

You will learn to write loops next time!

