Data Wrangling

Some definitions

- A data table is a collection of measurements
- A variable is a column in a data table
- An observation is a row in a data table
- A measurement, or scalar, is a value for each (observation, variable) pair

1918

	A	8	с	D	E	F	G
7	a		Monday	Tuesday	Wednesday	Thursday	Friday
8	Studer	nt Name	15 Nov-15	16 Nov-15	17 Nov-15	18 Nov-15	19 Nov-15
9	01	Lee, John	PR	PR	PR	PR	PR
10	02	Williams, Adam	PR	PR	PR	PR	PR
11	03	Williams, Sarah	PR	PR	PR	PR	PR
12	04	Doe, Jane	PR	AB	AB	PR	AB
13	05	Liu, Kat	PR	AB	PR	PR	PR
14	06	Smith, Elizabeth	PR	PR	PR	PR	PR
15	07	Sanders, Shane	AB	PR	PR	PR	PR
16	08	White, Andres	PR	PR	PR	PR	PR
17	09	Aaron son, Allis on	PR	PR	PR	PR	PR
18	10	Mapple, Noah	PR	PR	PR	PR	PR
19	11	Grande, John	PR	PR	PR	PR	PR
20	12	McDonell, Josh	PR	PR	PR	PR	PR
21	13	Spear, Terry	PR	PR	PR	PR	PR
22	14	Greene, Tom	PR	PR	PR	PR	PR
23	15	Snow, Daniel	PR	PR	PR	PR	PR
24	16	Daniels, Jack	PR	PR	AB	PR	PR
25	17	Daniels, Bob	PR	PR	PR	PR	PR
26	18	West, Williams	PR	₹ PR	PR	PR	PR
27	19						
28	20			ATTE	NDANCE:		
29	21			Sele	ct.		
30	22			AB I	Absent		
31	23				1		
32	24						
33	25						
34	26					8	
35	27						
36	28					0	
37	29						
38	30						
39		Nº PResent per Day:	17	16	16	18	17
40		II* ABsent per Day:	1	2	2	0	1
41	18	Total:	18	18	18	18	18
42		Daily Attendance %:	94	89	29	100	94

Data wrangling

- Reduction/Aggregation: reduces a variable to a scalar
 - Summarizing (e.g., How many students are in the class? And how many had perfect attendance?)
- Transformation/Mutation: creates a new variable based on one or more existing variables
 - From a student's total absences and total number of school days, compute the proportion of days the student was absent

Data wrangling (cont'd)

- Data verb: transforms a data table into a new one, usually by applying a reduction or transformation
 - Adding or deleting variables or observations
 - Sorting a variable (e.g., names) in, say, ascending order
 - Filtering a variable (e.g., who was absent on the day of the test?)
- Grouping data is another data verb whereby data are grouped before a reduction or transformation is applied
 - "Group by" students whose last name begins with A to M and N to Z

dplyr

What is dplyr?

- An R package full of data verbs
- Some examples of things it can do
 - Select (variables)
 - Filter (observations)
 - Sort (rearrange data)
 - Summarize (e.g., mean)
 - Transform (e.g., add columns)
 - The all-powerful group_by operation

Aside: packages

- A package is a collection of functions which are not built-in to a language, but which can be imported easily, and then used as if they were built-in.
- To install a package into R, type the following in the console:
 install.packages("<packagename>")
- Then, to load the package library (<packagename>)
- For example, the <u>datasets</u> package has loads of built-in data sets
 - o install.packages("datasets")
 - library(datasets)
 - o install.packages("dplyr")
 - library(dplyr)

Our data: A survey sent to Slovakian youth in 2013

- The data set consists of responses to 150 questions, covering topics such as music/movie preferences, hobbies and interests, spending habits, etc.
- Contains 1010 rows and 150 columns

A sample of questions from the survey. Complete information is available <u>here</u>.

Sample survey questions

Column Name

Question

Reliability Keeping promises Loss of interest Friends versus money Funniness Fake Criminal damage Decision making Empathy I am reliable at work and always complete all tasks given to me. I always keep my promises. I can fall for someone very quickly and then completely lose interest. I would rather have lots of friends than lots of money. I always try to be the funniest one. I can be two faced sometimes. I damaged things in the past when angry. I take my time making decisions. I am an empathetic person.

An excerpt of the data

Reliability	Keeping promises	Loss of interest	Friends versus money	Funniness	Fake	Criminal damage	Decision making
4	4	1	3	5	1	1	3
4	4	3	4	3	2	1	2
4	5	1	5	2	4	1	3
3	4	5	2	1	1	5	5
5	4	2	3	3	2	1	3
3	4	3	2	3	1	4	2
4	5	3	4	4	1	2	2
3	3	1	4	4	2	1	3
5	4	1	4	2	2	1	4
4	5	3	4	3	1	2	5
4	4	1	3	2	1	1	5
3	3	3	3	5	3	5	3
5	5	4	4	3	1	2	5
5	4	3	3	3	2	2	5
5	4	1	5	4	1	4	5
5	4	5	3	5	1	5	3
2	3	5	4	5	3	3	5
5	3	2	2	3	5	5	2
4	5	3	5	3	2	1	3
4	5	3	4	3	1	3	4
2	4	2	1	3	1	4	2
4	4	2	3	4	2	3	1
4	3	1	3	3	3	1	5
4	4	2	3	4	3	1	4
3	5	1	5	2	2	5	3
5	4	5	4	3	2	1	5
4	4	3	5	5	2	1	4
4	2	2	4	3	1	1	1
4	4	4	2	4	2	5	2

Importing data into RStudio

To store the data set in a data frame called responses:

responses <- read.table("~/R/dplyr/responses.csv", sep = ";", header = TRUE)

To see the head, or the first six rows, of responses:

head(responses)

Г	Music	slow.:	songs.or	.fast	t.songs	Dance	Folk Co	untry	Class	sical.m	usic M	usical	Pop	Rock	Metal.	or.Hardroc	k Punk	HiphopR	ap	
1	5				3	2	1	2			2	1	5	5			1 1		1	
2	4				4	2	1	1			1	2	3	5			4 4		1	
3	5				5	2	2	3			4	5	3	5			3 4		1	
4	5				3	2	1	1			1	1	2	2			1 4		2	
5	5 5				3	4	3	2			4	3	5	3			1 2		5	
6	5				3	2	3	2			3	3	2	5			5 3		4	
L	Regga	eska	Swing	Jazz	Rock.n.	.roll	Alternat	ive La	atino	Techno	Tran	ce Ope	ra M	ovies	Horror	Thriller	Comedy	Romantic	sci.	fi
1	2	1		1		3		1	1			1	1	5	4	2	5	4		4
2		3		1		4		4	2			1	1	5	2	2	4	3		4
3		4		3		5		5	5			1	3	5	3	4	4	2		4
4		2		1		2		5	1			2	1	5	4	4	3	3		4
5	5	3		2		1		2	4			2	2	5	4	4	5	2		3
6		3		4		4		5	3			1	3	5	5	5	5	2		3
L	War F	antasy	.Fairy.t	ales	Animate	ed Doc	umentary	West	ern Ad	ction H	History	Psych	olog	y Pol:	itics M	athematics	Physic	s Interne	t PC	ΕĒ.
1	. 1			5		5	3		1	2	1			5	1	3		3	53	
2	1			3		5	4		1	4	1			3	4	5	5	2	4 4	
3	2			5		5	2		2	1	1			2	1	5	5	2	4 2	
4	3			1		2	5	5	1	2	4			4	5	4		1	3 1	
5	5 3			4		4	3		1	4	3			2	3	2		2	2 2	
6	3			4		3	13		2	4	5			3	4	2		3	4 4	

Five basic verbs in dplyr

- select () selects one or more columns in a data frame
- filter () filters rows from a data frame according to some criterion
- arrange () arranges rows in a data frame in ascending or descending order, based on the value(s) in one or more columns
- group by () and summarize () are usually used together, and allow you to summarize a column of values grouped by some other variable, e.g., compute the mean of all the values in a column, per group
- mutate () adds new columns to a data frame by transforming existing ones

The two most basic functions are select () and filter (), which select columns and filter rows, respectively.

Selecting columns with select()

We can select columns by listing their names explicitly: age, gender, and education

head(select(responses, Age, Gender, Education))

ĺ		Age	Gender	Edu	ucation
	1	20	female	college/bachelor	degree
	2	19	female	college/bachelor	degree
	3	20	female	secondary	school
	4	22	female	college/bachelor	degree
	5	20	female	secondary	school
	6	20	male	secondary	school
1					

And we can select a range of columns using the ':' operator:

head(select(responses, Reliability:Decision.making))

	Reliability	Keeping.promises	Loss.of.interest	Friends.versus.money	Funniness	Fake	Criminal.damage	Decision.making
1	4	4	1	3	5	1	1	3
2	4	4	3	4	3	2	1	2
3	4	5	1	5	2	4	1	3
4	3	4	5	2	1	1	5	5
5	5	4	2	3	3	2	1	3
6	3	4	3	2	3	1	4	2

select(), cont'd

To select all columns that start with some character string, use the function starts with (). Maybe for some reason we want to select all the columns that start with the letter 'a' :

head(select(responses, starts with("a")))

	Alternative	Animated	Action	Art.exhibitions	Active.sport	Adrenaline.sports	Ageing	Alcohol	Appearence.and.gestures
1	1	5	2	1	5	4	1	drink a lot	4
2	4	5	4	2	1	2	3	drink a lot	4
3	5	5	1	5	2	5	1	drink a lot	3
4	5	2	2	5	1	1	4	drink a lot	3
5	2	4	4	1	1	2	2	social drinker	3
6	5	3	4	2	4	3	1	never	3
	Achievements	Asserti	veness A	Age					
1	4		1	20					
2	2		2	19					
3	3		3	20					
4	3		5	22					
5	3		4	20					
6	2		4	20					
	1								

select(), cont.

Some additional options to select columns based on a specific criteria include:

- 1. ends_with () Select columns that end with a character string
- 2. contains () Select columns that contain a character string
- 3. matches () Select columns that match a regular expression
- 4. one_of () Select columns names that are from a group of names

Selecting rows with filter()

Filter the rows for young people who consider themselves empathetic:

head(filter(responses, Empathy > 3)) Life.struggles Happiness.in.life Energy.levels Small...big.dogs Personality Finding.lost.valuables Getting.up Interests.or.hobbies Parents..advice Ouestionnaires.or.polls Internet.usage Finances Shop few hours a day few hours a day 5 less than an hour a day few hours a day few hours a day 4 less than an hour a day Branded.clothing Entertainment.spending Spending.on.looks Spending.on.gadgets Spending.on.healthy.eating Age Hei 20 20 5 20 4 18 19 2 19 Number.of.siblings Gender .right.handed Education Only.child Village...town House.. .block.of.flats eft. female right handed secondary school no city block of flats male right handed secondary school no city block of flats female right handed secondary school no village house/bungalow female city right handed secondary school no house/bungalow female right handed secondary school city block of flats no female left handed secondary school block of flats no city

Some potentially interesting findings here: These individuals skew towards agreement with the statement "I find it very difficult to get up in the morning." All of them responded neutrally to the statement "I believe all my personality traits are positive." And, % of them are female. (Of course, these are only the first 6 individuals who consider themselves empathetic.)

filter(), cont'd

Filter for young people who consider themselves empathetic and feel lonely in life:

head(filter(responses, Empathy > 3, Loneliness > 3)) Prioritising.workload Writing.notes Workaholism Thinking.ahead Final.judgement Reliability Keeping.promises 4 NA riends.versus.money Loss.of.interest Funniness Criminal.damage Decision.making Elections Judgment.calls Hypochondria athy Eating.to.survive Compassion.to.animals Borrowed.stuff Giving Cheating.in.school Health Changing.the.past God Dreams Charity Number.of.friends Punctuality 5 3 i am often running late am often early 4 i am often running late am often running late i am always on time i am often early

They mostly consider themselves procrastinators, would rather have friends than money, and would change the past if they could.

filter(), cont'd

Filter for people who are under the age of 20, enjoy meeting new people, and drink alcohol:

head(filter(responses, Age < 20, Socializing > 3, Alcohol %in% c("social drinker", "drink a lot")))

They aren't so interested in Western movies, writing, or gardening; but they like comedies, romantic movies, and foreign languages.

Recall how to select:

head(select(responses, Age, Gender, Education))

	Age	Gender	Edu	lcation
1	20	female	college/bachelor	degree
2	19	female	college/bachelor	degree
3	20	female	secondary	school
4	22	female	college/bachelor	degree
5	20	female	secondary	school
6	20	male	secondary	school

Here it is again, using piping:

```
responses %>%
select(Age, Gender, Education) %>%
head
```

We are piping the responses data frame to the select () function to extract the three columns (age, gender, and education), and then we are piping the ensuing data frame to the head () function.

Pipe operator: %>%

- The pipe operator allows you to pipe the output from one function to the input of another function
- Instead of nesting functions as we've been doing (reading from the inside to the outside), the idea of of piping is to read the functions from left to right

Pipe operator: %>%

To see the head, or the first six rows, of responses:

head(responses)

responses %>% head

		-																		
L	Music	slow.	songs.or.	fast.	.songs 1	Dance	Folk (Country	Class	sical.mu	isic M	isical	Pop	Rock	Metal.c	or.Hardroc	k Punk	Hiphop	Rap	
1	. 5				3	2	1	2			2	1	5	5			1 1		1	
2	4				4	2	1	1			1	2	3	5		5	4 4		1	
3	5				5	2	2	3			4	5	3	5		1	3 4		1	
4	5				3	2	1	1			1	1	2	2			1 4		2	
5	5 5				3	4	3	2			4	3	5	3			1 2		5	
6	5				3	2	3	2			3	3	2	5			5 3		4	
L	Regga	eska	SwingJ	azz F	Rock.n.:	roll #	Alterna	ative L	atino	Techno	.Tran	ce Oper	га М	ovies	Horror	Thriller	Comedy	Romantic	Sci	.fi
1	2	1		1		3		1	1			1	1	5	4	2	5	4		4
2		3		1		4		4	2			1	1	5	2	2	4	3		4
3		4		3		5		5	5			1	3	5	3	4	4	2		4
4		2		1		2		5	1			2	1	5	4	4	3	3		4
5	5	3		2		1		2	4			2	2	5	4	4	5	2		3
6		3		4		4		5	3			1	3	5	5	5	5	2		3
L	War F	antasy	.Fairy.ta	les A	Animate	d Doci	imentai	y West	ern A	ction Hi	story	Psycho	olog	y Pol:	itics Ma	athematics	Physic	s Intern	et I	°C
1	. 1			5	3	5		3	1	2	1			5	1	3		3	5	3
2	1			3	2	5		4	1	4	1			3	4	5		2	4	4
3	2			5	3	5		2	2	1	1			2	1	5		2	4	2
4	3			1	8	2		5	1	2	4			4	5	4		1	3	1
5	5 3			4	5	4		3	1	4	3			2	3	2		2	2	2
6	3			4		3		3	2	4	5			3	4	2		3	4	4

Arrange rows with arrange ()

To arrange rows by the values in a particular column or columns, use the arrange() function, with the name(s) of the column(s) you want to arrange the rows by as argument(s):

an	4	4	4	4	5	0.00		4		5	to are contexts
Interests	s.or.hobbies Pare	entsadvice Ques	stionnaires.or.polls	Internet.us	sage	Finances S	hoppi	ng.cent	res	Branded	.clothing
	5	3	5	few hours a	day	5			5		3
	2	2	5	most of the	day	5			4		3
	5	3	2	few hours a	day	2			5		4
	3	2	3	few hours a	day	3			3		5
	1	3	5	few hours a	day	1			5		
	3	3	3	most of the	day	5			5		3
Entertain	nment.spending Sp	ending.on.looks	Spending.on.gadgets	Spending.on	.heal	thy.eating	Age	Height	Wei	ght	
	5	3	2			5	15	173		49	
	1	2	2			2	15	170		51	
	3	5	5			5	15	160		48	
	2	4	2			2	15	181		63	
	4	5	4			2	15	176		53	
	3	3	2			3	15	170		49	

Taking the head of the data frame arranged by age yields the responses of six 15-year-olds, who aren't super likely to spend their money on healthy eating, and prefer branded clothing to non-branded.

arrange(), cont'd

By default, arrange() sorts in ascending order, but you can also arrange in descending order:

 γ_{1}

Inter	ests.or.hobb	ies Parents	advice Que	estionnaires.or.pol	ls	Int	ernet.u	sage	Finances S	hopping.c	entr
		4	2		3	few 1	nours a	day	1		
		2	3		3 16	ess than an	hour a	day	4		
		4	2		3	most	of the	a day	3		
		3	4		3 16	ess than an	hour a	day	3		
5		2	4		4	most	of the	a day	5		
<u> </u>		3	1		1 10	ess than an	hour a	day	1		
Brand	ed.clothing	Entertainme	nt.spending	Spending.on.looks	Spend	ding.on.gad	jets sp	endin	g.on.healt	hy.eating	Age
	1		3	1			1			5	30
	2		2	3			1			3	30
	4		4	3			4			4	30
	1		3	2			2			4	30
	5		5	5			5			5	30
3	1		5	3			2			2	30

This group of 30-year-old respondents are much more likely to spend money on healthy eating, and less likely to care about branded clothing.

Pipe operator: %>%

• The real power of piping is that it enables us to seamlessly combine dplyr data verbs

arrange(), cont'd

Let's select a few columns and arrange the rows by number of friends:

responses %>%

select(Age, Gender, Number.of.friends, Happiness.in.life) %>%
arrange(Number.of.friends) %>%
head

	Age	Gender	Number.of.friends	Happiness.in.life
1	22	female	1	2
2	21	male	1	4
3	21	female	1	3
4	18	female	1	3
5	17	female	1	2
6	21	female	1	2

	Age	Gender	Number.of.friends	Happiness.in.life
1	22	female	5	5
2	20	male	5	5
3	20	female	5	4
4	25	female	5	4
5	21	female	5	4
6	21	female	5	2

Again, in descending order:

```
responses %>%
select(Age, Gender, Number.of.friends, Happiness.in.life) %>%
arrange(desc(Number.of.friends)) %>%
head
```

(Note the correlation between number of friends and happiness in life.)

arrange(), cont'd

Same as before, except now let's also filter for respondents over the age of 25:

```
responses %>%
select(Age, Gender, Number.of.friends, Happiness.in.life) %>%
arrange(Number.of.friends) %>%
filter(Age > 25) %>%
head
```

	Age	Gender	Number.of.friends	Happiness.in.life
1	28	female	1	3
2	26	male	1	4
3	27	male	2	4
4	29	male	2	NA
5	28	female	2	4
6	28	female	2	3

Hypothesis: people's happiness levels depend less on their number of friends as they age?

Create summaries using summarise()

The summarise() function creates a new data frame that summaries a column in the given data frame. For example, to compute the mean happiness, apply the mean() function to the column Happiness.in.life and call the value avg_happiness. (Because some survey respondents left this field blank, we remove the N/A responses using filter() and !is.na.)

responses %>% summarise(avg_happiness = mean(Happiness.in.life))

	avg_happiness
1	NA

responses %>% summarise(avg happiness = mean(Happiness.in.life, na.rm = TRUE))

	avg_happiness
1	3.705765

Create summaries using summarise()

If we want to compare the average happiness of female vs. male respondents, we can also filter by gender:

```
responses %>%
filter(Gender == "female") %>%
summarise(avg_happiness = mean(Happiness.in.life, na.rm = TRUE))
```

avg_happiness 1 3.681895

```
responses %>%
filter(Gender == "male") %>%
summarise(avg_happiness = mean(Happiness.in.life, na.rm = TRUE))
avg_happiness
1 3.748166
```

Gender doesn't appear to be a major determinant of happiness.

summarise(), cont'd

There are many other summary statistics, such as:

- sd()
- min()
- max()
- median()
- sum()
- length () (the length of a column)
- first() (the first value in a column)
- last () (the last value in a column)
- unique () (the number of distinct values in a column)

Very common paradigm

- Split: break down your data set by groups, or levels
- Apply: apply some function (e.g., summarize) to each group
- Combine: put your data back together again

Cereals:

- Split up the data by shelf
- Calculate the average sugar content per shelf
- Put your data back together again

Group operations using group_by()

The group_by () operation makes it easy to implement the split-apply-combine paradigm.

We can split a data frame by some variable, apply a function to the ensuing split data frames, and then combine the output back into a single data frame.

To group by gender, and summarize the average happiness of each gender group:

```
responses %>%
group_by(Gender) %>%
summarise(avg_happiness = mean(Happiness.in.life, na.rm = TRUE))
```

Gender avg_happiness

	<fct></fct>	<db1></db1>
1		3.17
2	female	3.68
3	male	3.75

group_by(), cont.

Now, combining functions, we can split the data frame by age, gender, number of siblings, or any other factor, and then ask for the average scores to the following questions, from left to right:

- 1. I am 100% happy with my life.
- 2. I live a very healthy lifestyle.
- 3. I look at things from all different angles before I g
- 4. I always try to vote in elections.
- 5. I am not afraid to give my opinion if I feel strongly
- 6. I feel lonely in life.
- 7. I spend a lot of money on my appearance.

This gives us a set of summary statistics grouped by age.

The rightmost column reports the total number of respondents by age.

	Age	avg_happiness	avg_health	avg_thinking	avg_voting	avg_assertiveness	avg_loneliness	avg_spending_looks	total
<:	int>	<db1></db1>	<db1></db1>	<db1></db1>	<db1></db1>	<db1></db1>	<db1></db1>	<db1></db1>	<int></int>
1	15	3.833333	2.166667	3.000000	1.500000	3.166667	3.666667	3.166667	6
2	16	3.333333	2.933333	3.466667	2.133333	3.133333	3.266667	3.866667	15
3	17	3.547619	3.023810	3.095238	1.690476	3.523810	3.047619	3.309524	42
4	18	3.701149	3.068966	3.459770	2.908046	3.494253	3.137931	3.183908	87
5	19	3.771812	2.932886	3.248322	3.791946	3.328859	2.744966	3.033557	149
6	20	3.708955	2.880597	3.425373	3.731343	3.470149	2.783582	3.111940	134
7	21	3.611765	3.105882	3.411765	3.729412	3.376471	2.964706	3.117647	85
8	22	3.622642	3.037736	3.641509	3.792453	3.641509	2.867925	2.981132	53
9	23	3.735294	3.058824	3.294118	3.676471	3.470588	2.823529	2.852941	34
10	24	3.842105	2.947368	4.000000	3.789474	3.789474	2.947368	2.789474	19
11	25	3.650000	3.200000	3.250000	4.050000	3.650000	3.000000	3.150000	20
12	26	3.700000	3.100000	3.800000	3.500000	3.600000	2.600000	3.500000	10
13	27	3.875000	2.875000	3.875000	4.125000	3.500000	2.625000	3.125000	8
14	28	3.916667	3.250000	3.916667	3.416667	3.833333	2.750000	2.666667	12
15	29	3.833333	3.000000	3.500000	4.500000	4.000000	2.333333	2.833333	6
16	30	3.833333	3.166667	3.666667	4.333333	4.500000	3.166667	2.833333	6

Create new columns using mutate()

The mutate() function adds new columns to a data frame. Let's create a new column called decision_regrets, which will be the ratio of responses to the statement "I take my time to make decisions" to "I often think about and regret the decisions I make":

```
responses %>%
    mutate(decision_regrets = Decision.making / Self.criticism) %>%
    select(Age, decision_regrets) %>%
    head

Age decision_regrets
1 20 3.00
2 19 0.50
3 20 0.75
```

Note the selection for Age and the new decision regrets columns.

1.00

0.60

0.50

Otherwise, the new data frame would contain all 150 columns.

22

20

20

Create new columns using mutate()

The mutate() function adds new columns to a data frame. In this example, we use it to mutate Age from an integer to a factor:

```
responses %>%
```

```
mutate(decision_regrets = Decision.making / Self.criticism) %>%
mutate(age_factor = cut(Age, breaks = c(15, 19, 23, 27))) %>%
select(age_factor, decision_regrets) %>%
head
```

	age_factor	decision_regrets
1	(19,23]	3.00
2	(15,19]	0.50
3	(19,23]	0.75
4	(19,23]	1.00
5	(19,23]	0.60
6	(19,23]	0.50

Note the selection for age_factor and the new decision_regrets columns. Otherwise, the new data frame would contain all 150 columns.

Benefits of dplyr

- R already contains many built-in functions, like split(), summary(), and so on, but the dplyr equivalents are easier to work with and targeted specifically at data frames
- Additionally, dplyr built-in functions have more intuitive syntax
 - From a data frame listing all flights that departed from New York City in 2013, you can select all flights that departed on January 1st in dplyr with:

filter(flights, month == 1, day == 1)
flights %>% filter(month == 1, day == 1)

• In base R, this query would be more verbose and more difficult to read:

flights[flights\$month == 1 & flights\$day == 1,]