
Plan for the week
● M: Introduction to R

● W: dplyr
○ More advanced R functionality (sort, filter, group by, etc.)

● F: Section
○ Visualization (i.e., plotting) in R

Introduction to R

Programming with data
● Figure out what you want to do

○ Describe those tasks in code, i.e., as a computer program

○ Execute your program and interpret the output

○ Repeat until your program is bug-free

● Repeat, because what you want to do has inevitably changed
(for the better)

Statistical tools are central to data science
● One could define data science as a set of methods that can be

used to draw robust conclusions from partial information

● But before data science, this goal was already a goal of statistics,
which explains why statistics is integral to data science

● R is a tool for statistical computation; it is a facilitator for both
data science and statistics to achieve this goal

What is R, more specifically?
● Some nifty things R can do include:

○ Basic maths (arithmetic, probability, statistics)
○ Machine learning (clustering, classification, regression)
○ Numerical optimization and mathematical programming
○ Visualizations: static and dynamic graphics

● In this course, we will use R for almost all of the above (not
so much mathematical programming)

Before we start...
● Style matters in programming!

○ But you don’t want to be original!
○ Code is hard to read, even for expert programmers.
○ Abide by this style guide to make it easier for other R programmers

(including your later self!) to read what you write.

● Testing is essential!
○ You must test every single line of code you write.
○ We will test our code manually, by running each and every line in turn,

and observing the outputs, one after another.

● So is commenting! (Code is written for computers to read, not people!)

http://adv-r.had.co.nz/Style.html

Let’s Get Started

Values in R
The most basic R values (or data types) are: numerics, characters, and logicals.

>> TRUE # expression
TRUE # value

>> 100 # expression
100 # value

>> “fun” # expression
“fun” # value

Note: In other programming languages, logicals are called booleans.

Values in R
The most basic R values (or data types) are: numerics, characters, and logicals.

>> TRUE # expression >> true # expression
TRUE # value Error: object true not found

>> 100 # expression
100 # value

>> “fun” # expression >> “true” # expression
“fun” # value “true” # value

Note: In other programming languages, logicals are called booleans.

Expressions in R
Expressions: Programs are made of up expressions, which built up from values,
and are the sentences the language can “understand,” and hence evaluate.

>> 3 + 4 # expression
7 # value

>> 3 - 4 # expression
-1 # value

>> 3 * 4 # expression
12 # value

>> 3 / 4 # expression
0.75 # value

Logical Expressions in R
Logical expressions involve and evaluate to logicals.

>> TRUE && TRUE # expression
TRUE # value

>> TRUE && FALSE # expression
FALSE # value

>> TRUE || TRUE # expression
TRUE # value

>> TRUE || FALSE # expression
TRUE # value

>> !TRUE # expression
FALSE # value

String Manipulations in R
● To find the length of a string:

>> nchar(“hello”) # expression
5 # value

● To combine (concatenate) strings:

>> paste(“Mary”, “had”, “a”, “little”, “lamb”)
“Mary had a little lamb”

>> paste(“Mary”, “had”, “a”, “little”, “lamb”, sep = “-”)
“Mary-had-a-little-lamb”

Variables in R
Variables are names used to store, and then later reference, data

>> x <- 5 # assigns value of x
>> y <- 10 # assigns value of y
>> x * y # expression
50 # value

>> z <- 5 # assigns value of z
>> z <- z + 1 # updates value of z
>> z # expression
6 # value

>> z <- z - 1 + y # updates value of z
>> z # expression
15 # value

● A conditional expression, or just conditional for short, is used in code with a
logical dependence

● A conditional in R looks like this:

if (logical) {
expression

}

● The expression is evaluated only if the logical is TRUE

Conditionals

Examples in R
>> if (TRUE) { # if TRUE

a <- 100 # assign a the value 100
}

 >> a # what is a’s value?
 100 # a is equal to 100

>> if (!TRUE) { # if not TRUE (i.e., FALSE)
a <- a - 100 # update a’s value

}
 >> a # what is a’s value?
 100 # a is still equal to 100

Predicates

● A predicate is a special kind of expression that evaluates to a logical,
meaning true or false

● Examples:
○ It is raining today
○ The value of x is greater than 0

● They are used, generally, to test a condition to decide whether or not
to do one thing or another
○ If it is raining today, then I should carry an umbrella
○ If the value of x is greater than 0, then I can withdraw money from my account

More Examples in R
>> if (0 == 1) { # if TRUE

a <- a - 100 # assign a the value 100
}

 >> a # what is a’s value?
 100 # a is still equal to 100

>> if (0 != 1) { # if not TRUE (i.e., FALSE)
a <- a - 100 # update a’s value

}
 >> a # what is a’s value?
 0 # a’s value is now 0

More complicated examples in R

>> x <- 5 # sets value of x to 5
>> y <- 10 # sets value of y to 10
>> y # what is y’s value?
10 # y is equal to 10

>> if (x == 5) { # if x is equal to 5,
y <- y + 20 # update y’s value to be

} # its original value plus 20
>> y # what is y’s value?
30 # y is now equal to 30

More complicated conditionals
● It is possible to include an else clause in a conditional

if (condition) {
trueExpression

} else {
falseExpression

}

if (It is a weekday) {
Get up early

} else {
Sleep late

}

More complicated examples in R

>> if (x != 5) { # if x is NOT equal to 5,
y <- y + 20 # update y’s value to be

its original value plus 20
} else {

y <- y - 10 # update y’s value to be
} # its original value minus 10

>> y # what is y’s value?
20 # y is now equal to 20

Beyond Values: Data Structures

Data Frames

Data frames
● Used for storing databases

● R has plenty of built-in data frames
○ iris, mtcars (motor trend cars), USArrests, ToothGrowth, etc.

Manipulating data frames in R
● Use head to see the first few entries of a data frame

● Use tail to see the last few

First few entries

Last few entries

● Use str to see the overall structure

● Use names to see the variable names (i.e., column headers)

● Use dim to see the dimensions (number of rows and columns)

● Or, if you want the number of rows and columns as individual

integers, use nrow and ncol

● Use summary to summarize the values of each variable

(min, 1st quartile, median, mean, 3rd quartile, max)

Everything in the mpg column

● Use $ to select a single column in a data frame

● Apply a summarization function to a single column

● You can also select a portion of the data frame

Selection of rows 31 and 32, and columns 1 through 4, only

● You can also select a single row, or a few rows

Selection of row 3 only

Selection of rows 2 through 5

● Here is the analog of selecting rows: selecting columns

Multiple columns

Selection of all but row 1: Mazda RX4

Selection of all but column 1: mpg

● You can also select all but a single row or column with -

Vectors

Vectors
● A vector is a sequence of objects (can be numbers, strings, etc.)

○ Points in the Cartesian plane are two-dimensional vectors

● Vectors can also be 3, 4, 5, etc. dimensions:
○ (1, 2, 3) is a 3-dimensional vector

○ (10, -20, 30, -40) is a 4-dimensional vector

○ (1.1, -2.2, -3.3, -4.4., 5.5) is a 5-dimensional vector

Representing vectors in R
We use the c function to create a vector in R:

>> x <- c(1, 2, 3, 4) # creates vector x
1 2 3 4

>> y <- c(-1, -2 ,-3, -4) # creates vector y
-1 -2 -3 -4

>> z <- c(“hello”, “world”) # creates vector z
“hello” “world”

>> w <- c(TRUE, TRUE, FALSE) # creates vector w
TRUE TRUE FALSE

Computing with numerical vectors in R
Many common mathematical functions apply to (i.e., across) vectors:

>> x <- c(1, 2, 3, 4) # creates vector x
>> y <- c(-1, -2, -3, -4) # creates vector y
>> x + y # sums two vectors
0 0 0 0

>> y * -1 # multiples vector by -1
1 2 3 4

>> x * y # multiplies two vectors
-1 -4 -9 -16

Computing with logical vectors in R
Logical functions can also be applied to (i.e., across) vectors:

>> x <- c(TRUE, FALSE, FALSE)
>> y <- c(FALSE, FALSE, TRUE)

>> x & y # vector logical AND
FALSE FALSE FALSE

>> x | y # vector logical OR
TRUE FALSE TRUE

Summarizing numerical vectors in R
Other mathematical functions summarize vectors:
sum, mean, min, max, etc.

>> x <- c(1, 2, 3, 4) # creates vector x
>> sum(x) # sums elements of x
10

>> mean(x) # calculates mean of x
2.5

>> min(x) # calculates min of x
1

What can we learn about cars?
● The mean mpg is roughly 20

● The heaviest car weighs in at 5424 lbs

Computing with string vectors in R
We can also apply functions across vectors of strings:

>> days <- c(“Mon”, “Tues”, “Wednes”, “Thurs”, “Fri”)
>> week <- paste(days, “day”, sep = “”)
>> week
(“Monday”, ”Tuesday”, ”Wednesday”, ”Thursday”, “Friday”)

>> week <- paste(“day”, days, sep = “”)
>> week
(“dayMon”, ”dayTues”, ”dayWednes”, ”dayThurs”, “dayFri”)

Logical vectors in R
>> mtcars$mpg > 23

>> mtcars$cyl == 4

Computing with logical vectors in R: Filter
>> mtcars[mtcars$mpg > 23,]

>> mtcars[mtcars$cyl == 4,]

Computing with logical vectors in R: Sort
>> ex1 <- c(“b”, “a”, “c”)
>> order(ex1)
2 1 3

>> ex1[order(ex1)]
“a” “b” “c”

>> sort(ex1)
“a” “b” “c”

More Ways to Sort
>> order(mtcars$mpg)

>> mtcars$mpg[(order(mtcars$mpg))]

>> sort(mtcars$mpg)

Factors

Factors are used to represent categorical data in R

>> survey <- c(“M”, “F”, “M”, “O”, “F”)

>> survey
“M”, “F”, “M”, “O”, “F”

>> new_survey <- factor(survey)
M F M O F
Levels: F M O

Categorical data: Nominal

Factors are used to represent categorical data in R

>> survey <- c(“small”, “medium”, “large”, “medium”)

>> survey
“small” “medium” “large” “medium”

>> new_survey <- factor(survey, ordered = TRUE,
 levels = c(“small”, “medium”, “large”))
>> new_survey
small medium large medium
Levels: small < medium < large

Categorical data: Ordinal

NA is a special logical value

>> survey <- c(“M”, “F”, “M”, NA, “F”)

>> survey
“M”, “F”, “M”, NA, “F”

>> is.na(survey)
FALSE FALSE FALSE TRUE FALSE

>> survey[!is.na(survey)]
“M”, “F”, “M”, “F”

NA (no answer)

Data Wrangling

Filter, Sort, & Merge

>> mean(mtcars$mpg)
20.09062

>> attach(mtcars)
>> mean(mpg)
20.09062

Quick shortcut

● Filter: select a subset of rows, depending on some condition

Selection of the first two columns of
the subset of rows containing cars
with mpg greater than 23

Selection of the first two rows among the subset of
rows containing cars with mpg greater than 23

● Subset: selecting rows and columns

● Sort

>> mtcars[order(mpg),]

Sort by mpg, in ascending order

>> mtcars[order(cyl, mpg),]

>> mtcars[order(mpg, -cyl),]

Sort by cyl, and then mpg (both in ascending order)

Sort by mpg (ascending), and then cyl (descending)

● Sort (cont’d)

Join

● Merge

● Merge (cont’d)

Inner join (default) Left outer join

Outer join Right outer join

In-class survey

Let’s imagine a survey where we ask Brown students:

● Their year
● On a scale of 1 to 5 (1 being hate, and 5 love),

how much do they like the blue bear?
● Should it stay?

A survey on the blue bear (Blueno)

Here’s a sample of responses from some imaginary students:
year <- c(1, 3, 4, 4)
rating <- c(5, 2, 1, 2)
keep <- c(TRUE, FALSE, FALSE, FALSE)

Here’s how to create a data frame from these vectors:
df <- data.frame(year, rating, keep)

To create your own data frame

There are a number of ways to do this:
df$name <- c(“Andreas”, “Monica”, “Nikhil”, “Alex”)
df[[“name”]] <- c(“Andreas”, “Monica”, “Nikhil”, “Alex”)
df[, “name”] <- c(“Andreas”, “Monica”, “Nikhil”, “Alex”)

All produce the same result:

Add a column to your data frame

We can see that Andreas is a first-year
who loves the bear, and Monica, Nikhil,
and Alex are upperclassmen who dislike it.

What is your year?

A) First year
B) Sophomore
C) Junior
D) Senior
E) Grad student

iClicker Q

On a scale of 1 to 5 (1 being hate, and 5 love), how much do you
like the blue bear?

iClicker Q

Should it stay?

A) Yes

B) No

iClicker Q

Summary
● Basic R values: numerics, characters, logicals

● R objects: data frames, vectors

● Data wrangling, so far:
○ Select (variables)
○ Filter (observations)
○ Sort (rearrange data)
○ Summarize (e.g., mean)
○ Transform (e.g., add columns)

● Still to come: Grouping

