Simulating The Electoral College

Adapted from slides by **David Meyer**

Who will win the presidential election?

- Inputs: Numerous poll results taken in all the states
- Impossible to predict the precise outcome
 - Will Trump be re-elected in 2024?
 - Will it rain tomorrow?
- Output: Pr[Clinton wins]

How to win a presidential election

- Need a majority of electoral votes
 - Total = 538 = Representatives (435) + Senators (100) + 3 for DC
 - 538 / 2 = 269, so to win, need at least 270
- Most states winner-take-all
 - Maine & Nebraska are exceptions, dividing up their electoral votes by congressional districts

Who will win the presidential election?

- Inputs: Numerous poll results taken in all the states
- Impossible to predict the precise outcome
 - Will Trump be re-elected in 2024?
 - Will it rain tomorrow?
- Output: $Pr[Clinton wins] = Pr[C \ge 270]$

Simplified story

• Clinton has constant probability *p* of winning in each state

$$\Pr(C \ge 26) = \sum_{k=26}^{51} {\binom{51}{k}} p^k (1-p)^{51-k}$$

• Hard to calculate exactly, but not so hard to simulate!

Simulation

- For each state *s*, draw a random number $n \in [0, 1]$
- If n < p, Clinton wins s: i.e., set $X_s = 1$
- Clinton wins overall if $\sum_{s} X_{s} \ge 26$
- Repeat many (e.g., 10⁵) times

р	Exact	Simulated
0.1	1.982×10 ⁻¹³	0
0.2	8.129×10 ⁻⁷	0
0.3	0.0014	0.0014
0.4	0.0735	0.0735
0.5	0.5	0.4970

Less simplified story

• Simplified story

$$\Pr(C \ge 26) = \sum_{k=26}^{51} {\binom{51}{k}} p^k (1-p)^{51-k}$$

• Closer to the real deal

$$\Pr(C \ge 270) = \sum_{t=270}^{538} \sum_{\substack{S \subset [51]\\\Sigma v_s = t}} \prod_{s \in S} p_s \prod_{s \notin S} (1 - p_s)$$

Simulation

- Let EV_s be the number of electoral votes ascribed to state *s*
- For each state *s*, draw a random number $n \in [0, 1]$
- If $n < p_{s'}$ Clinton wins s: i.e., set $X_s = 1$
- Clinton wins overall if $\sum_{s} (X_{s})(EV_{s}) \ge 270$
- Repeat many (e.g., 10⁵) times

Simulation

- Let EV_s be the number of electoral votes ascribed to state *s*
- For each state *s*, draw a random number $n \in [0, 1]$
- If $n < p_s$, Clinton wins s: i.e., set $X_s = 1$
- Clinton wins overall if $\sum_{s} (X_{s})(EV_{s}) \ge 270$
- Repeat many (e.g., 10⁵) times

Problem with this general approach: $p_s \neq 1 - p_s$ What about Johnson, Stein, etc.?

Estimating p_s from Polling Data

- October 30, 2016 Mitchell Research & Communications poll
 - 953 likely voters in Michigan
 - Clinton: 47%, Trump: 41%, Johnson: 6%, Stein: 2%
 - Margin of error 3.2%
- Assume % Clinton is normal: N(μ_c = 47, σ_c = 3.2)
- Assume % Trump is normal: N(μ_{τ} = 41, σ_{τ} = 3.2)
- % Difference is also normal: N($\mu_c \mu_{\tau}$, sqrt($\sigma_c^2 + \sigma_{\tau}^2$))
 - These are the parameters, assuming the percentages are independent.
 - We adjust the standard deviation because they are not:
 - N(47 41, $f \operatorname{sqrt}(3.2^2 + 3.2^2)), f \in \{1, 2, 4\}$

Estimating p_s from Polling Data, cont'd

• Clinton wins state s if $D_s > 0$

$$p_s = \Pr(\text{Clinton wins state } s) = \frac{1}{\sqrt{2\pi\sigma}} \int_0^\infty e^{-(x-\mu)^2/2\sigma^2} \mathrm{d}x$$

Image Source

Image Source

Image Source

Simulation Results

- Compute p_s as described for each state
 - Treat each of Maine/Nebraska's districts as its own state for a total of 56 states
- Simulate as described using these more sensible estimates
- E[*C*] ≈ 299 and Pr[*C* ≥ 270] ≈ 0.778

538's results

Chance of winning

- Doesn't use only the most recent polls. Regresses on past polls to predict future.
 - Also weighs polls by reliability, recency, sample size, etc.
- Pays attention to correlations among states

Extras

An Interesting Aside

- The electoral college has the effect of stretching mid-range probabilities
- Close races become less close as a result

