
Text

These lecture slides were compiled by Will Povell in 2017, 

when, as a sophomore, he TAed for CS 100.

https://cs.brown.edu/people/memoriam/william-povell/


Image Source

How to talk like a 
Democrat (or a 
Republican)

http://review.chicagobooth.edu/magazine/winter-2015/how-to-talk-like-a-democrat-or-a-republican
http://www.brown.edu/Research/Shapiro/pdfs/politext.pdf
http://www.brown.edu/Research/Shapiro/pdfs/politext.pdf
http://www.brown.edu/Research/Shapiro/pdfs/politext.pdf


Google Books Ngram Viewer: Charts word frequencies in books over time, 
offering insight into how language, culture, and literature have changed

https://books.google.com/ngrams


How the Internet Talks: A Reddit Ngram viewer created by FiveThirtyEight 
to visualize the prevalence of terms on Reddit Image Source

https://projects.fivethirtyeight.com/reddit-ngram/?keyword=batman.superman.spiderman&start=20071015&end=20170731&smoothing=10
http://projects.fivethirtyeight.com/reddit-ngram/


Power and Agency in Hollywood Characters

“In the movie Frozen, only the princess Elsa is 
portrayed with high power and positive agency, 
according to a new analysis of gender bias in 
movies. Her sister, Anna, is portrayed with similarly 
low levels of power as 1950s-era Cinderella.”

A team at UW analyzed the language in nearly 800 movie scripts, quantifying 
how much power and agency those scripts give to individual characters.
Women consistently used more submissive language, with less agency.

Image Source

http://www.washington.edu/news/2017/11/13/new-tool-quantifies-power-imbalance-between-female-and-male-characters-in-hollywood-movie-scripts/


Visualizes words in a document 
with sizes proportional to how 
frequently the words are used

Example: The Great Gatsby

Word Clouds





← Words favored by Democrats Words favored by Republicans → 

 Image Source

2012 Democratic and Republican Conventions

http://www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html


Language of the alt-right

Image Source

https://www.washingtonpost.com/news/the-intersect/wp/2016/09/26/these-charts-show-exactly-how-racist-and-radical-the-alt-right-has-gotten-this-year/


Natural Language Processing



Natural Language Processing
Natural Language Understanding
● Analyze the syntactic structure of language and deriving semantic meaning
● Example tasks

○ Speech Recognition
○ Named Entity Recognition
○ Text Classification

Natural Language Generation
● Example tasks

○ Text Generation (a college essay written by PaLM or GPT)
○ Speech Generation (found in virtual assistants)
○ Question Answering



Text Preprocessing



Text Preprocessing (2017)
Jargon
● A set of documents is called a corpus (plural corpora).

The first step in text analysis is preprocessing (cleaning) the corpus:
● Tokenize: parse documents into smaller units, such as words or phrases
● Remove stop words (e.g., a, the, and, etc.) and punctuation
● Stemming & Lemmatization: standardize words with similar meaning
● Normalize: convert to lowercase (carefully: e.g., US vs. us)



Text Preprocessing (2022)
Jargon
● A set of documents is called a corpus (plural corpora).

The first step in text analysis is preprocessing (cleaning) the corpus:
● Lower casing

● Removal of Punctuations

● Removal of Stopwords

● Removal of Frequent words

● Removal of Rare words

● Stemming

● Lemmatization

● Removal of emojis

● Removal of emoticons

● Conversion of emoticons to words

● Conversion of emojis to words

● Removal of URLs

● Removal of HTML tags

● Chat words conversion

● Spelling correction

Noise Removal



Tokenization
● Split up a document into tokens

● Common tokens
○ Words: e.g., “hello”, “blueno”, “laptop”, etc.
○ Punctuation: e.g., . , “ ‘ ! ?, etc.

● Other tokens
○ Replace very uncommon words with an unknown token: <UNKNOWN>
○ End sentences (or sentence like structures) with a stop token: <STOP>
○ Replace all numbers with a single token: e.g., 100 → <NUM>
○ Replace common words (“a”, “the”, etc.) with <SWRD>

● Tokenization is a pain (there are lots of edge cases), but luckily, it is a solved problem

● “The dog ran in the park joyously!” →
c(“<SWRD>”, “dog”, “ran”, “<SWRD>”,  “<SWRD>”, “park”, “<UNKNOWN>”, “!”, “<STOP>”)



● Goal: standardize words with a similar meaning

● Stemming reduces words to their base, or root, form

● Lemmatization makes words grammatically comparable
(e.g., am, are, is          be)

He ate a tasty cookie yesterday, and he is eating tastier cookies today. 

He ate a tasty cookie yesterday, and he is eat tasti cookie today.

He eat a tasty cookie yesterday, and he is eat tasty cookie today.

Stemming & Lemmatization

stemming

lemmatization



Examples:
● make all words lowercase 
● remove any punctuation
● remove unwanted tags

Has Dr. Bob called? He is waiting for the results of Experiment #6.

has dr bob called he is waiting for the results of experiment 6

<p>Text.</p><!-- Comment --><a href="#breakpoint">More text.</a>'

text more text

Normalization

Image Source

https://www.kdnuggets.com/2019/04/text-preprocessing-nlp-machine-learning.html


Preprocessing should be customized based on the type of corpus.
● Tweets should be preprocessed differently than academic texts.

Google Books Ngram Viewer vs. The Reddit Ngram Viewer
● So should the names of bands: e.g., The The.

A Final Note

https://books.google.com/ngrams
https://projects.fivethirtyeight.com/reddit-ngram/?keyword=batman.superman.spiderman&start=20071015&end=20170731&smoothing=10
https://en.wikipedia.org/wiki/The_The


Language Modeling



Bag-of-Words Model
Represents a corpus as an unordered 
set of word counts, ignoring stop words

Doc 1: David likes to play soccer.
Ben likes to play tennis.

Doc 2: Mary likes to ride her bike.

Doc 3: David likes to go to the movie theater.

Doc 1 Doc 2 Doc 3

David 1 0 1

Mary 0 1 0

Ben 1 0 0

tennis 1 0 0

soccer 1 0 0

theater 0 0 1

bike 0 1 0

movie 0 0 1

ride 0 1 0

play 2 0 0

likes 2 1 1

go 0 0 1



An N-gram is a sequence of N words in a corpus.

The movie about the White House was not popular.

N=1 (unigram, bag-of-words): The, movie, about, the, White, House, was, not, popular

N=2 (bigram): The movie, movie about, about the, the White, White House, House was, was not,
not popular

N=3 (trigram): The movie about, movie about the, about the White, the White House, White House 
was, House was not, was not popular

N=4 …

N-gram Model



Term frequency

Inverse document frequency

tfidf(t, d, D) = tf(t, d) idf(t, D)

Useful for decreasing weight of common, low information words

TF-IDF: Term frequency-Inverse document frequency 

Total number of documents

Number of documents the term t appears in

Frequency of term t in document d

Maximum frequency of term t across all documents



TF-IDF: An Example
Document 1

The dog ate. The man walked.

Document 2

The dog ate happily.
The dog ran through the park.

Document 3

The sun was shining.
The birds were singing.

tfidf(“the”, 1, D) = tf(“the”, 1) idf(“the”, D)

tf(“the”, 1) = (2 / 3) ≈ 0.67
idf(“the”, D) = log(3 / 3) = 0

tfidf(“the”, 1, D) ≈ (0.67)(0) = 0

tfidf(“dog”, 1, D) = tf(“dog”, 1) idf(“dog”, D)

tf(“dog”, 1) = (1 / 2) ≈ 0.50
idf(“dog”, D) = log(3 / 2) ≈ 0.176

tfidf(“dog”, 1, D) ≈ (0.50)(0.176) ≈ 0.088

The Dog



TF-IDF: An Example
Document 1

The dog ate. The man walked.

Document 2

The dog ate happily.
The dog ran through the park.

Document 3

The sun was shining.
The birds were singing.

tfidf(“man”, 1, D) = tf(“man”, 1) idf(“man”, D)

tf(“man”, 1) = (1 / 1) = 1
idf(“man”, D) = log(3 / 1) ≈ 0.477

tfidf(“man”, 1, D) ≈ (1)(0.477) ≈ 0.477

tfidf(“dog”, 1, D) = tf(“dog”, 1) idf(“dog”, D)

tf(“dog”, 1) = (1 / 2) ≈ 0.50
idf(“dog”, D) = log(3 / 2) ≈ 0.176

tfidf(“dog”, 1, D) ≈ (0.50)(0.176) ≈ 0.088

Man Dog



Natural Language Understanding

Language is complex.  The goal of text analysis is to strip away 
some of that complexity to extract meaning.



Text Analysis
The process of computationally retrieving information from text, 
such as books, articles, emails, speeches, and social media posts.



Document Classification
● Who wrote each of the Federalist papers

(anonymous essays in support of the U.S. constitution)?
○ John Jay, James Madison, or Alexander Hamilton?

● A text analysis of the Federalist papers
○ An Analysis of word frequency, distribution, patterns, and meaning.

https://towardsdatascience.com/hamilton-a-text-analysis-of-the-federalist-papers-e64cb1764fbf


Spam Detection
Naive Bayes
● For all classes y, calculate ∏

i
 P(X

i
 | Y) P(Y = y)

● Choose a class y s.t. P(Y | X) ∝ ∏
i
 P(X

i
 | Y) P(Y = y) is maximal

n-gram Spam Ham

hello .30 .33

friend .08 .23

password .28 .03

money .40 .12

Spam .1

Ham .9

spam

not spam



Spam Detection (cont’d)
An email that contains the words hello and friend, but not money and password:
● Spam: P(hello | spam) P(friend | spam) P(spam) = (.30)(.05)(.1) = 0.0015

● Ham: P(hello | ham) P(friend | ham) P(ham) = (.33)(.25)(.9) = 0.07425

n-gram Spam Ham

hello .30 .33

friend .08 .23

password .28 .03

money .40 .12

Spam .1

Ham .9



Spam Detection (cont’d)
An email that contains the words hello, money, and password:
● Spam: P(hello | spam) P(money | spam) P(password | spam) P(spam) = (.30)(.20)(.40)(.1) = 0.0024

● Ham: P(hello | ham) P(money | ham) P(password | ham) P(ham) = (.33)(0.02)(0.10)(.9) = 0.000594

n-gram Spam Ham

hello .30 .33

friend .08 .23

password .28 .03

money .40 .12

Spam .1

Ham .9



Document Clustering
● Topic modeling: assign topics (politics, sports, fashion, etc.)

to documents (e.g., articles or web pages)



Document Clustering

Image Source

Biomedical Articles

http://www.arbesman.net/blog/2011/03/24/clustering-map-of-biomedical-articles/


Natural Language Generation



Natural Language Generation: Image Captions

Image Source

https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Vinyals_Show_and_Tell_2015_CVPR_paper.pdf


Natural Language Generation: Descriptions
E.g., Textual descriptions of quantitative geographical and hydrological sensor data.

Image Source

http://www.mdpi.com/1424-8220/15/7/16009


Natural Language Generation: Humor
Researchers developed a language model to generate jokes of the form 
“I like my X like I like my Y, Z”
● E.g., “I like my coffee like I like my war, cold.”
● After testing, they claimed: “Our model generates funny jokes 16% 

of the time, compared to 33%, for human-generated jokes.”

There are also language models that generate puns:
● E.g., "What do you call a spicy missile? A hot shot!"



Natural Language Understanding: Humor

Image Source

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html


Automatic Document Summarization
Automatically summarize documents (e.g., news articles or research papers).

Ben and Ally drove their car to go grocery shopping. They bought bananas, 
watermelon, and a bag of lemons and limes.

1. Extraction: copying words or phrases that are deemed interesting by some 
metric; often results in clumsy or grammatically-incorrect summaries:
Ben and Ally go grocery shopping. Bought bananas, watermelon, and bag.

2. Abstraction: paraphrasing; results similar to human speech, but requires 
complex language modeling; active area of research at places like Google
Ben and Ally bought fruit at the grocery store.



Sentiment Analysis



● Classifies a document as expressing a positive, negative, or neutral opinion.

● Especially useful for analyzing reviews (for products, restaurants, etc.) and 
social media posts (tweets, Facebook posts, blogs, etc.).

Sentiment Analysis



Twitter Data



Researchers have built lists of words with “positive” and “negative” connotations

For each chunk of our own text, we can calculate how many words lie in these 
“positive” or “negative” groupings

I love all the delicious free food in the CIT, but working in the Sunlab makes me sad.

We can also add common Internet slang to lists of “positive” and “negative” words:
e.g, “luv”, “yay”, “ew”, “wtf”

Positive vs. Negative Words

Abnormal
Abolish
Abominable
Abominate
Abort
Abrasive
...

A+
Acclaim
Accomplish
Accurate
Achievement
Admire
...



Sentiment Analysis of Tweets
1. Download tweets from twitter.com

2. Preprocess tweets
a. Remove emojis* and URLs
b. Remove punctuation (e.g., hashtags)
c. Split sentences into words; convert to lowercase; etc.

3. Build a language model: e.g., represent documents (i.e., tweets)
by their positive, neutral, and negative words

4. Classify each tweet by scoring it based on its aggregate count: 
E.g., positive = +1 * count; neutral = 0; negative = -1 * count

*Comment from a student: Emojis are informative. Might do better if they are used.



Using the R package twitteR, we can directly access Twitter data.
Here’s how to access the 5000 most recent tweets about Starbucks in R:

library(twitteR)

starbucks_tweets <- searchTwitter('@Starbucks', n = 5000)

Starbucks’ Tweets



Here’s an example of 3 tweets that were returned:

"Wish @Starbucks would go back to fresh baked goods instead of the 
pre-packaged. #sad #pastries" 

“Huge shout out: exemplary service from Emile @starbucks I left 
with a smile. @ Starbucks Canada https://t.co/WtXjeekCT1"

"Currently very angry at @Starbucks, for being out of their 
S'mores frap at seemingly every location \xed\xa0\xbd\xed\xb8\xa1"

Represents

Starbucks’ Tweets (cont’d)



Remove emojis: starbucks_tweets <- iconv(starbucks_tweets, 'UTF-8', 'ASCII', sub = " ")
Remove punctuation: starbucks_tweets <- gsub('[[:punct:]]', ' ', starbucks_tweets)

Remove URLs: starbucks_tweets <- gsub('http.* *', ' ', starbucks_tweets)
Convert to lowercase: starbucks_tweets <- tolower(starbucks_tweets)

"Wish @Starbucks would go back to fresh baked 

goods instead if the pre-packaged. #sad 

#pastries" 

“Huge shout out: exemplary service from Emile 

@starbucks I left with a smile. @ Starbucks 

Canada https://t.co/WtXjeekCT1"

"Currently very angry at @Starbucks, for being 

out of their S'mores frap at seemingly every 

location \xed\xa0\xbd\xed\xb8\xa1"

"wish starbucks would go back to fresh baked 

goods instead if the prepackaged 

sad pastries"  

"huge shout out exemplary service from emile 

starbucks i left with a smile starbucks 

canada "       

"currently very angry at starbucks for being 

out of their smores frap at seemingly 

every location "

Starbucks’ Tweets (cont’d)



Next, we load lists of pre-determined positive and negative words 
(downloaded from the Internet):

pos <- scan('/Downloads/positive-words.txt', what = 'character', comment.char = ';')
neg <- scan('/Downloads/negative-words.txt', what = 'character', comment.char = ';')

We add some informal terms of our own:

pos <- c(pos, 'perf', 'luv', 'yum', 'epic', 'yay')
neg <- c(neg, 'wtf', 'ew', 'yuck', 'icky')

Starbucks’ Tweets (cont’d)



Next, we split our tweets into individual words.
starbucks_words = str_split(starbucks_tweets, ' ')

We then compare our words to the positive and negative terms.
match(starbucks_words, pos)

match(starbucks_words, neg)  

"wish starbucks would go back to fresh baked goods instead of the prepackaged sad pastries"  
Score: 0 (here we see limitations of this technique)

"huge shout out exemplary service from emile starbucks i left with a smile starbucks canada"       
Score: +2

"currently very angry at starbucks for being out of their smores frap at seemingly every 
location ”
Score: -1

Starbucks’ Tweets (cont’d)



Sentiment Analysis



Positive words that contrast with an overall negative message (and vice versa)
“I enjoyed the old version of this app, but I hate the newer version.”

Selecting the proper N-gram
● “This product is not reliable”

● “This product is unreliable”

If unigrams are used, “not reliable” will be split into “not” and “reliable,”
which could result in a neutral sentiment.

Sarcasm
“I loved having the fly in my soup! It was delicious!”

Some Challenges



Sentiment Analysis
We can see that sentiment analysis can give a business insight into 
public opinion on its products and service. It can also reveal how 
consumers feel about a business compared to competing brands.

Businesses can also collect tweets over time, and see how sentiment 
changes. Can perhaps even try to build a causal model, using data 
about ad campaigns, new product releases, etc.



Regular Expressions



Regular expressions are a handy tool for searching for patterns in text.

You can think of them as a fancy form of “find and replace”.

● In R, we can use grep to find a pattern in text:
○ grep(regex, text)

● And, we can use gsub to replace a pattern in text:
○ gsub(regex, replacement, text) 

Regular Expressions (Regex)



Consider a literature corpus, some written in American English, 
others in British English. 

Let’s find the word “color,” which is equivalent to “colour.” 

We have a few options: e.g.,
grep(“color|colour”, text) 
grep(“colou?r”, text) 

| means “or”, and ? in this context means the preceding character is optional.

We also want to find “theater” and “theatre.”
grep(“theat(er|re)”, text) 

Regular Expressions



Next, let’s find words that rhyme with “light.”

grep(“[a-zA-Z]+(ight|ite)”, text)

[a-zA-Z] matches any letter
+ matches 1 or more of the preceding characters

Tonight I might write a story about a knight with a snakebite.

Regular Expressions

> text <- "Tonight I might write a story about a knight with a snakebite."
> text_vec <- unlist(strsplit(text, split = "[ ]"))
> grep("[a-zA-Z]+(ight|ite)", text_vec)
[1]  1  3  4  9 12
> text_vec[grep("[a-zA-Z]+(ight|ite)", text_vec)]
[1] "Tonight"    "might"      "write"      "knight"     "snakebite."



Let’s try numbers. For example, let’s find Rhode Island zip codes.
Hint: they start with 028 or 029.

grep(“02(8|9)[0-9]{2}”, text)

[0-9] matches any digit
{2} matches exactly 2 of the preceding characters

69 Brown Street, Providence, RI 02912

424 Bellevue Ave, Newport, RI 02840

Regular Expressions



Here’s how we might we might find all instances of parents, 
grandparents, great grandparents, and so on.

grep(“((great )*grand)?((fa|mo)ther)”, text)

* captures 0 or more of the preceding characters
? in this context means the preceding expression is optional

My mother, father, grandfather, grandmother, great 
great grandmother, and great great great grandfather 
were all born in Poland.

Regular Expressions


