
Clustering



● Unsupervised learning is learning from unlabelled data

● We simply a search for patterns in the data

Examples

● Clustering

● Density Estimation

● Dimensionality Reduction

What is Unsupervised Learning?



● A form of unsupervised learning used to separate a large group 
of observations into smaller subgroups of similar observations

● Examples
○ Topic modeling: clustering documents by subject (politics, sports, etc.)
○ Identifying hot spots of police or gang violence in urban areas
○ Image segmentation, gene expression, etc.

● Relevance to EDA 
○ Clustering is used to identify and visualize patterns in data
○ Helps identify outliers and/or formulate hypotheses

What is Clustering?



k-means Clustering
● k-means clustering is the most common type of clustering

● The k in k-means refers to the number of clusters

● Pros:
○ It is easy to understand and to implement, so it can produce quick and 

dirty results

● Cons:
○ You must specify k in advance; if k is too large, it will find clusters where 

there are none; if k is too small, it will miss “real” clusters



Step 1: Choose a desired number of clusters, k

Step 2: Randomly assign each data point to an initial cluster 

Step 3: Compute cluster centroids (this is the k-centroids algorithm, right?)

Step 4: Re-assign each point to the closest cluster centroid

Step 5: Re-compute cluster centroids

Step 6: Repeat steps 4 and 5 until a stopping criterion is met

How does it work?



Visualizing k-means

Video Source

http://www.youtube.com/watch?v=R2e3Ls9H_fc
https://www.naftaliharris.com/blog/visualizing-k-means-clustering/


Kids tend to dance in clusters. Let’s use 
k-means to help them find a clustering.

k-means clustering requires that you 
specify how many clusters you want to 
group the points (e.g., dancers) into. 

Let’s pick three clusters, so k = 3.

Image and example from John W. Foreman’s Data Smart book

A middle school dance



k-means clustering starts with three 
initial points (cluster centers), one per 
cluster, spread out across the dance 
floor.

Dancers are assigned to the clusters 
nearest to them.

The algorithm then slides the cluster 
centers and their corresponding 
clusters around until it finds a good fit.

A middle school dance

Image and example from John W. Foreman’s Data Smart book



The algorithm is initialized with 
three centers (three black circles).

Each data points is then assigned to 
the nearest center.

In effect, this operation divides the 
space into three clusters, which are 
depicted here as variously shaded 
regions.

A middle school dance



Cluster centers are then recomputed. 

Observe how they move towards the 
data points.

And the process continues (until 
some stopping criterion is met).

A middle school dance



Final form! 

Note the locations of the cluster 
centers and the divisions between 
clusters.

A middle school dance





What do the clusters mean?
● It is never a good idea to take an algorithm’s word for it. We must always 

apply human insight to interpret an algorithm’s output.

● In the case of clustering, we ask what the clusters might signify?

● For a middle school dance, they could be cliques. The kids might be too 
timid to dance with kids outside their comfort zone!

● k-means allows us to cluster data, but we cannot accept a clustering if we 
cannot attribute meaning to the clusters. We should also be able to 
understand the why behind the assignment.



We’re still missing something key!
● Goal: to group “similar” objects into meaningful subgroups, 

called clusters

● Points on the Cartesian plane are similar if the distance 
between them is small

● But more generally, how do we define the similarity between 
two observations? Answer: we use a metric.

A note on nomenclature: Sometimes we speak of the similarity of two 
observations, and other times we speak of their difference/distance.
A term that captures both similarity and distance is proximity.



What is a metric?
● A way to gauge similarity (or dissimilarity) among things

● A distance metric satisfies these three properties:
○ Positivity: Always non-negative (What would a negative distance mean?)

○ Symmetry: A is the same distance from B as B is from A

○ Triangle Inequality: A + B > C, B + C > A, and A + C > C

Note: a measure of similarity does not have to be a distance metric to be useful!



Euclidean Distance
● Distance “as the crow flies” is called Euclidean distance.

● In two dimensions:

● In n dimensions:
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D = sqrt((1 - 4)2 + (3 - 2)2)

    = sqrt(9 + 1) = sqrt(10)
    = 3.16



Manhattan Distance
Euclidean distance probably isn’t the best measure of distance in Manhattan, 
because the streets form a grid. A better idea:

or

(x1, y1)

(x2, y2)
D = |1 - 4| + |3 - 2| = 4
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Cosine Similarity
● Metrics need not capture spatial/physical distance
● Cosine similarity is the cosine of the angle between two vectors
● It measures the extent to which two vectors point in the same direction

○ 1  if the vectors point in exactly the same direction 
○ 0  if the vectors form a right angle
○ -1 if the vectors point in completely opposite directions 

Image Source

If θ is the angle 
between two points, 
then cosine similarity 
is just cos(θ)

http://blog.christianperone.com/2013/09/machine-learning-cosine-similarity-for-vector-space-models-part-iii/


Cosine Similarity θ
a(2,2)

b(1,-3)

For a = (2, 2) and b = (1, -3):

Euclidean distance of points a and b from origin

Pointwise multiplication: e.g.,
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x
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x
) + (a

y
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) = (2)(1) + (2)(-3) = 2 - 6 = -4



Pearson’s Correlation Coefficient
● Remember correlation?

○ Positive if when X increases, Y also increases
○ Negative if when X increases, Y decreases (or vice versa)

● Pearson’s Correlation Coefficient is precisely cosine similarity,
after standardizing values!



Hamming Distance
The metrics we’ve discussed so far make sense for data with numerical features. 
There are other metrics for categorical data!

Given two ordered vectors of the same length (i.e., representing the same 
features), the Hamming distance is the number of feature values that differ.

Assume we have compiled a group of people’s preferences for their favorite
(food, movie, book, subject, season):

● Person A: (banana, The Stranger, Forrest Gump, CS, Winter)
● Person B: (apple,    Harry Potter,  Star Trek,          CS, Winter)
● Person A and B differ in the food, movie, and book categories, so their Hamming distance is 3, 

and their normalized Hamming distance is ⅗.



Jaccard Similarity
Amazon might represent each of its users by a vector of the products they buy. 
But then, to measure similarity between users, almost all entries are 0, so all 
users look very similar. Jaccard similarity measures similarity among non-zeros.

E.g., x = (1,0,0,0,0,0,0,0,0,0) and y = (1,0,0,0,0,1,0,0,0,1)
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What makes a good clustering?
● The intra-cluster similarity is high

The quality of a clustering depends on the choice of similarity metric
● Lots of different choices of metrics!
● Think about what makes the most sense for your data
● Important: you can’t compare distances without first normalizing your data

○ E.g., sleep (on average 8) dominates GPA (on average 3), so a clustering 
by both would cluster only by sleep if the data were not first normalized



What makes a good clustering?
● The intra-cluster similarity is high
● The inter-cluster similarity is low

All of the aforementioned metrics measure intra-cluster similarity (i.e., similarity 
within clusters). To evaluate a clustering, we also need metrics to measure 
inter-cluster similarity: i.e., similarity between one cluster and another.



Linkage Metrics
Given two clusters A and B:

● Centroid
○ Find the distance between the centroid of A and the centroid of B

● Average
○ Find the average of the distance between all pairs a ϵ A and b ϵ B

● Complete
○ Find the maximum distance between all pairs a ϵ A and b ϵ B

● Single
○ Find the minimum distance between all pairs a ϵ A and b ϵ B

Image Source

https://www.multid.se/genex/onlinehelp/hs515.htm


Hierarchical Clustering
Agglomerative
● Bottom-up approach

○ Each observations starts in its own cluster
○ Clusters are merged as one moves up the hierarchy
○ Until all observations are in the same cluster

Divisive
● Top-down approach

○ All observations start in the same cluster
○ Clusters are divided as one moves down the hierarchy
○ Until each observation comprises its own cluster



Agglomerative Algorithm
● Initialize the algorithm with each data point in its own cluster
● Calculate the distances between all clusters
● Combine the two closest clusters into one
● Repeat until all data points are in the same cluster



Agglomerative Example

Image Source

https://en.wikipedia.org/wiki/Hierarchical_clustering


Agglomerative vs. Divisive

Image Source

https://afit-r.github.io/hc_clustering


Image Source

https://upload.wikimedia.org/wikipedia/commons/1/12/Iris_dendrogram.png

