
Naive Bayes

The MNIST images in these slides were borrowed from these slides.

https://inst.eecs.berkeley.edu/~cs70/sp15/notes/n21_slides.pdf


Probabilistic Classification Models
● Discriminative Model

○ Learns Pr[C | X] directly
○ Example: Logistic Regression

● Generative Model
○ Learns Pr[C | X] indirectly

■ P[C | X] = P[X, C] / P[X] = P[X | C] P[C] / P[X]
■ Depends on prior knowledge: P[C] is called the prior probability
■ Calculate the likelihood Pr[X | C]: probability of the features, given the labels
■ Finally, apply Bayes’ rule to calculate Pr[C | X] (the posterier probability)
■ MAP (maximum a posteriori) principle: Choose the most likely class C

○ Example: Naive Bayes



Probabilistic Generative Model (cont’d)
● A probabilistic generative model tells us: P[X | C]

● A classification problem: Given X, what is C?

● Bayes’ Rule to the rescue!

● P[C | X] = P[X | C] P[C] / P[X] is called the posterior probability
○ Depends on prior knowledge: P[C] is called the prior probability
○ Depends on the likelihood Pr[X | C]: probability of the feature values, given the labels
○ P[X]: total probability of X 

■ The sum over all classes c of the probability of c times the probability of X given c

○ P[X] is difficult to calculate, but happily, we don’t need to know it’s value … 



Image Source

MNIST Database

https://en.wikipedia.org/wiki/MNIST_database#/media/File:MnistExamples.png


MNIST Engineered Generative Model

● 0 is a loop
8 is two loops
1 is a line
Etc.

● Difficult
Lots of exceptions to our rules



MNIST Engineered Generative Model
● Assume |C| models, one that generates each class c ∈ C
● Such a generative model is a classifier. How?

● We have a model of each class c
● Given a new observation X = x, compute P[X | C]
● MAP principle: Choose the class c for which x is most probable

● 0 is a loop
8 is two loops
1 is a line
Etc.

● Difficult
Lots of exceptions to our rules



MAP (Maximum a posteriori) Principle



Probabilistic Classification Models
● Learn Pr[C | X, 𝜽]

○ Model parameters 𝜽 imply a probability of class C, given feature values X
○ Learn 𝜽 that minimizes error / maximizes accuracy

● Maximum a posteriori (MAP) principle
○ To classify, choose a class C that maximizes P[C | X, 𝜽]



MNIST Learned Generative Model

P[X | 1]

P[X | 2]

P[X | 8]



MNIST Learned Generative Model

Image Source

https://sklearn-theano.github.io/auto_examples/plot_mnist_generator.html


Bayesian Networks

 



Day Fever? Coughing? Headache? Bodyache? Flu?

1 Low None No Yes No

2 Low None No No No

3 Low A lot No Yes Yes

4 Mild A little No Yes Yes

5 High A little Yes Yes Yes

6 High A little Yes No No

7 High A lot Yes No Yes

8 Mild None No Yes No

9 High None Yes Yes Yes

10 Mild A little Yes Yes Yes

11 Mild None Yes No Yes

12 Mild A lot No No Yes

13 Low A lot Yes Yes Yes

14 Mild A little No No No

15 High None No No ?



Joint Probability Model
P[X

1
, ... , X

n
 | C]

P[X | C] = P[Fever = High, Coughing = None, Headache = No, Bodyache = No | C = Flu]

P[X | C] = P[Fever = Low, Coughing = A lot, Headache = No, Bodyache = No | C = Flu]

etc.

3 values of Fever, 3 values of Coughing, 2 values of Headache, 2 values of Bodyache

In total, 3*3*2*2 = 36 probabilities, when C = Flu

Likewise, 36 probabilities, when C = No Flu

In total, 72 probabilities: i.e., 72 model parameters 



Conditional Independence

Image Source

https://en.wikipedia.org/wiki/Conditional_independence


Conditional Independence

Joint Probability Distribution

Conditional Independence Assumption

Compact Representation



Conditional Independence



Naive Bayes’ Assumption



Naive Bayes’ Assumption



Naive Bayes’ Assumption
P[X

1
, ... , X

n
 | C]

P[X | C] = P[Fever = High, Coughing = None, Headache = No, Bodyache = No | C = Flu]

= P[Fever = High | C = Flu] P[Coughing = None | C = Flu]

   P[Headache = No | C = Flu] P[Bodyache = No | C = Flu]

3 values of Fever, 3 values of Coughing, 2 values of Headache, 2 values of Bodyache

In total, 3+3+2+2 = 10 probabilities, when C = Flu

Likewise, 10 probabilities, when C = No Flu

In total, 20 probabilities: i.e., 20 model parameters (down from 72)



Day Fever? Coughing? Headache? Bodyache? Flu?

1 Low None No Yes No

2 Low None No No No

3 Low A lot No Yes Yes

4 Mild A little No Yes Yes

5 High A little Yes Yes Yes

6 High A little Yes No No

7 High A lot Yes No Yes

8 Mild None No Yes No

9 High None Yes Yes Yes

10 Mild A little Yes Yes Yes

11 Mild None Yes No Yes

12 Mild A lot No No Yes

13 Low A lot Yes Yes Yes

14 Mild A little No No No

15 High None No No ?



P[Flu] = 0.64 P[No Flu] = 0.36

P[Bodyache | Flu] = 0.67 P[Bodyache | No Flu] = 0.40

P[No Bodyache | Flu] = 0.33 P[No Bodyache | No Flu] = 0.60

P[Headache | Flu] = 0.67 P[Headache | No Flu] = 0.20

P[No Headache | Flu] = 0.33 P[No Headache | No Flu] = 0.80

P[A lot | Flu] = 0.44 P[A lot | No Flu] = 0.00

P[A little | Flu] = 0.33 P[A little | No Flu] = 0.40

P[None | Flu] = 0.22 P[None | No Flu] = 0.60

P[High| Flu] = 0.33 P[High | No Flu] = 0.20

P[Mild| Flu] = 0.44 P[Mild | No Flu] = 0.40

P[None| Flu] = 0.22 P[None | No Flu] = 0.40





X = [High, No (Cough), No (Headache), No (Bodyache)]

● P[Flu | X] = P[High | Flu] P[None | Flu] P[No | Yes] P[No | Flu] P[Flu]

=                   [0.33]              [0.22]             [0.33]           [0.33]          [0.64]

= 0.0051

● P[NF | X] = P[High | NF] P[None | NF] P[No | NF] P[No | NoFlu] P[NF]

        =                  [0.20]             [0.60]              [0.80]          [0.60]               [0.36]

        = 0.0069

P[No Flu | X] = 0.0069 > 0.0051 = P[Flu | X]

So our Naive Bayes classifier outputs No Flu



MLE for Naive Bayes



MLE for Naive Bayes

Naive Bayes Assumption



MLE for Naive Bayes (cont’d)



MLE for Naive Bayes (cont’d)



MLE for Naive Bayes (cont’d)
Plug P(x

ij
, y

i
 | 𝜃) and P(y

i
 | 𝜃) back into the log likelihood function.

Use calculus to solve for the optimal 𝜃s: i.e., take derivatives & set equal to zero.



Back to MNIST: Bernoulli Model
The parameter vector 𝜃 consists of p, a

j
, and b

j
, for all j ∊ {1, …, m}.

There are 784 features, so there are 784 a
j
 and 784 b

j
 parameters, so 1569 in total.

In the full joint, there are 2784 - 1 parameters (per class, and there are 10 classes).

15% error rate on 
10,000 test images



Means:

Samples:

Naive Bayes



Back to MNIST: Gaussian Model

< 5% error rate on 
10,000 test images



Extras



Naive Bayes
We estimate the requisite probabilities by counting.

+ + + + + + - - - +



Naive Bayes (cont’d)
We estimate the requisite probabilities by counting.

P[•] = ? P[•] = ? P[+] = ? P[-] = ?

P[•|+] = ? P[•|-] = ? P[•|+] = ? P[•|-] = ?

+ + + + + + - - - +



Naive Bayes (cont’d)
We estimate the requisite probabilities by counting.

P[•] = 7/10 P[•] = 3/10 P[+] = 7/10 P[-] = 3/10

P[•|+] = 6/7 P[•|-] = 1/3 P[•|+] = 1/7 P[•|-] = 2/3

+ + + + + + - - - +



Naive Bayes (cont’d)
We estimate the requisite probabilities by counting.

P[•] = 7/10 P[•] = 3/10 P[+] = 7/10 P[-] = 3/10

P[•|+] = 6/7 P[•|-] = 1/3 P[•|+] = 1/7 P[•|-] = 2/3

Great!

Now how do we classify a new •?



Naive Bayes (cont’d)
We estimate the requisite probabilities by counting.

P[•] = 7/10 P[•] = 3/10 P[+] = 7/10 P[-] = 3/10

P[•|+] = 6/7 P[•|-] = 1/3 P[•|+] = 1/7 P[•|-] = 2/3

P[+|•] = P[•|+] P[+] = (6/7)(7/10) = 6/10.

P[-|•] = P[•|-] P[-] = (1/3)(3/10) = 1/10.

So • is classified as a +.



Naive Bayes (cont’d)
We estimate the requisite probabilities by counting.

P[•] = 7/10 P[•] = 3/10 P[+] = 7/10 P[-] = 3/10

P[•|+] = 6/7 P[•|-] = 1/3 P[•|+] = 1/7 P[•|-] = 2/3

P[+|•] = P[•|+] P[+] = (1/7)(7/10) = 1/10.

P[-|•] = P[•|-] P[-] = (2/3)(3/10) = 2/10.

So • is classified as a -.



Sanity Check
We estimate the requisite probabilities by counting.

P[•] = 7/10 P[•] = 3/10 P[+] = 7/10 P[-] = 3/10

P[•|+] = 6/7 P[•|-] = 1/3 P[•|+] = 1/7 P[•|-] = 2/3

P[+|•] = 6/7 P[-|•] = 1/7 P[+|•] = 1/3 P[-|•] = ⅔

P[+|•] > P[-|•], so • is classified as a +, and P[-|•] > P[+|•] so • is classified as a -.

+ + + + + + - - - +



In-class Activity





P[Yes] = 0.64 P[No] = 0.36

P[Weak | Yes] = 0.67 P[Weak | No] = 0.40

P[Strong | Yes] = 0.33 P[Strong | No] = 0.60

P[High | Yes] = 0.33 P[High | No] = 0.80

P[Normal | Yes] = 0.67 P[Normal | No] = 0.20

P[Hot | Yes] = 0.22 P[Hot | No] = 0.40

P[Mild | Yes] = 0.44 P[Mild | No] = 0.40

P[Cool | Yes] = 0.33 P[Cool | No] = 0.20

P[Sunny | Yes] = 0.22 P[Sunny | No] = 0.60

P[Overcast | Yes] = 0.44 P[Overcast | No] = 0.00

P[Rain | Yes] = 0.33 P[Rain | No] = 0.40



X = [Sunny, Cool, High, Strong]
● P[Yes | X] = P[Sunny | Yes] P[Cool | Yes] P[High | Yes] P[Strong | Yes] P[Yes]

=             [0.22]             [0.33]             [0.33]                 [0.33] [0.64] = 0.0051

● P[No | X] = P[Sunny | No] P[Cool | No] P[High | No] P[Strong | No] P[No]

        =             [0.60]             [0.20]             [0.80]                [0.60] [0.36] = 0.0069

P[No | X] > P[Yes | X]

So our NB classifier outputs No



Skipped Slides



Conditional Independence


