Plan for the week

e M: Maximum Likelihood Estimation
o Naive Bayes

e W: Clustering
o k-means clustering
o Hierarchical clustering

e Miscellaneous Algorithms
o Regression Trees, Logistic Regression, etc.



Maximum Likelihood Estimation




MLE: Intuition

We have data and suspect it is normally distributed.
What would be a good estimate of the mean of the distribution?
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MLE: Intuition (cont’d)

How about this distribution with a mean of about 637

It’s not impossible, but too many of the sample data
points are not very likely to have been drawn from it.
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MLE: Intuition (cont’d)

This distribution looks a lot better! It ascribes high probability to most of the points.
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MLE: Intuition (cont’d)

If we increase the mean even further, we again arrive at
a distribution that doesn’t fit the data well.

What is the “sweet spot” for our distribution’s mean?
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Generic Parameter Estimation

e Assume data are generated by a probabilistic model with parameter 6.
e Data are independent and identically distributed D={d, ..., d }.
e Goalis to estimate 6 (i.e., the parameter) well, given data.

e MLE is one approach. (There are many others!)



MLE: Mathematical Formulation

Find the parameter 6 that maximizes the likelihood of the data:
i.e., find0st.P(D | 6)=P(d, | 6)---P(d | 6)is maximized.

o This simplification used the independence assumption.

Equivalently, because the log is an increasing function, we can likewise
find the parameter 0 that maximizes the log likelihood of the data.

The log of a product of terms is the sum of the logs of those terms.

The mathematical formulation of MLE is to find 8 that maximizes
logP(D | 6) =logP(d, | ©) +---+log P(d_| 6)



MLE of a Bernoulli RV

Statistical Model of the data: D = {d1' o) dn}

o Assume the data are generated by a Bernoulli random variable with parameter p.
o Assume the data are independent and identically distributed (i.i.d.).

Goal is to estimate p (i.e., the parameter) well, given data.

The strategy is maximum likelihood estimation.

Examples:
o 000001001000000010000000000101000000: it is more likely p is close to 0
o 111101101111101110111101111011101111: it is more likely p is close to 1



What is the likelihood function?

PlX =1)=p

L(x: — p%i(] — p)l—%i Double check that this equation makes sense!
( L ' p) p ( p) (Discuss with your neighbor.)

L({Tz}?:l | p) = H L(ﬂ?i | P) Data are i.i.d.



What is the log likelihood function?
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What is the optimal value of p?
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Setting this derivative equal to zero yields:

nz n(l—72)

p* 1 —p*

But then Z(1 — p*) = p*(1 — Z). So p* = Z.
\sample proportion



