
Decision Trees



Playing Tennis
● Is it raining out?

○ Probably shouldn’t play

● Is it really hot?
○ Yes: Maybe, is it also windy?

■ If yes, sure!
■ Otherwise, I’ll pass

○ No: Sounds like a nice day,
       let’s play!

Image Credit: Will Povell (TA ‘17)



Decision Trees
● Modelled after flowcharts

● Main idea: Ask Yes/No questions until you learn 
enough to make a decision

● 20 questions: Is it bigger than a breadbox?

● Strategy: What questions should you ask first?

Image Source

https://en.wikipedia.org/wiki/Flowchart


Rainy? Temp Windy? Play?

Sunny Hot Yes Yes

Sunny Cold No Yes

Sunny Hot No No

Rainy Cold No No

Rainy Cold Yes No

Rainy?

Yes 
Yes No No No

Yes  No Yes
No No

Windy?

Yes  No Yes
No No

Temp

Which is the best predictor?



Majority Vote

The data say never play tennis on Rainy days,
and usually play on Sunny days.

Decision Heuristic: Majority vote
● None of the Rainy observations are classified incorrectly.
● But 33% of the Sunny observations are classified incorrectly.

If Sunny, Play!
If Rainy, Don’t Play!

Sunny 67% Play
33% Don’t Play

Rainy 0% Play
100% Don’t Play

Rainy?

Yes 
Yes No No No



Majority Vote

The data say sometimes play tennis on Hot days,
and don’t usually play on Cold days.

Decision Heuristic: Majority vote
● 50% of the Hot observations are classified incorrectly.
● 33% of the Cold observations are classified incorrectly.

If Hot, (say) Play!
If Cold, Don’t Play!

Hot 50% Play
50% Don’t Play

Cold 33% Play
67% Don’t Play

Yes  No Yes
No No

Temp



Majority Vote

The data say sometimes play tennis on Windy days,
and don’t usually play on non-Windy days.

Decision Heuristic: Majority vote
● 50% of the Windy observations are classified incorrectly.
● 33% of the Not Windy observations are classified incorrectly.

If Windy, (say) Play!
If Not Windy, Don’t Play!

Windy 50% Play
50% Don’t Play

Not Windy 33% Play
67% Don’t Play

Yes  No Yes
No No

Windy?



Measure of Impurity

Majority vote classification rule: classify via the mode, max(p
1
, p

2
).

Here, p
1
 and p

2
 are the percentages in class 1 (YES, play) and 2

(NO, don’t play), respectively, at a node after a split.

We then calculate the misclassification error:
● max(p

1
, p

2
) are classified correctly

● 1 - max(p
1
, p

2
) are classified incorrectly

In binary classification, assuming majority vote, the 
misclassification error 1 - max(p

1
, p

2
) is necessarily ≤ ½.



1 1 
0 0

1 1 0 0

GOOD

1 1 
0 0

1 0 1 0

BAD

● p
1
 = % belonging to class 1

● p
2
 = % belonging to class 2

● GOOD: Error = 1 - max(100%, 0%) = 1 - 1 = 0

● BAD: Error = 1 - max(50%, 50%) = 1 - 0.5 = 0.5

To ask good questions, minimize impurity!

Note that the error at both GOOD nodes and the error at both BAD nodes are equal, 
although of course the errors at the GOOD nodes and the errors at the BAD nodes differ.



Rainy?

Error(Left) = 1 - max(67%, 33%) = 0.33
Error(Right) = 1 - max(0%, 100%) = 0.0

Weight(Left) = 60%
Weight(Right) = 40%

Weighted Error = (0.33 x 0.6) + (0.0 x 0.4) = 0.2

1 1 
0 0 0

1 1 
0 0 0

To ask good questions, minimize impurity!



Weather Temp Windy? Play?

Sunny Hot Yes Yes

Sunny Cold No Yes

Sunny Hot No No

Rainy Cold No No

Rainy Cold Yes No

Sunny 67% Play
33% Don’t Play

Rainy 0% Play
100% Don’t Play

Windy 50% Play
50% Don’t Play

Not Windy 33% Play
67% Don’t Play

Which is the best predictor?

Hot 50% Play
50% Don’t Play

Cold 33% Play
67% Don’t Play



Yes  No Yes
No No

Windy?

Yes  No Yes
No No

Temp

Error(Left) = 1 - max(66%, 33%) = 0.33
Error(Right) = 1 - max(0%, 100%) = 0.0
Weight(Left) = 0.6, Weight(Right) = 0.4
I = (0.6 * 0.33) + (0.4 * 0.0) = 0.2

Rainy?

Yes 
Yes No No No



Yes  No Yes
No No

Windy?

Yes  No Yes
No No

Temp

Error(Left) = 1 - max(50%, 50%) = 0.5
Error(Right) = 1 - max(33%, 66%) = 0.33
Weight(Left) = 0.4, Weight(Right) = 0.6
I = (0.4 * 0.5) + (0.6 * 0.33) = 0.4

Error(Left) = 1 - max(50%, 50%) = 0.5
Error(Right) = 1 - max(33%, 66%) = 0.33
Weight(Left) = 0.4, Weight(Right) = 0.6
I = (0.4 * 0.5) + (0.6 * 0.33) = 0.4

Rainy?

Yes 
Yes No No No

Error(Left) = 1 - max(66%, 33%) = 0.33
Error(Right) = 1 - max(0%, 100%) = 0.0
Weight(Left) = 0.6, Weight(Right) = 0.4
I = (0.6 * 0.33) + (0.4 * 0.0) = 0.2



The Algorithm
● Start at the root of the tree, with all 

observations

● Score all the questions using current set of 
observations

● Split current set of observations by the question 
with the best score

● Repeat until all observations are contained in 
just one class, or all observations’ answers are 
identical (i.e., no further information is available 
to differentiate among classes)

● Given a new observation, classify by walking the 
tree according to the answers to the questions



Pros and Cons of Decision Trees
Pros:
● Interpretable
● Suitable for both quantitative and categorical features (i.e., questions)
● Suitable for both quantitative and categorical labels (i.e., regression)

(Regression trees coming soon!)

Cons:
● Low bias
● High variance: a small change in the training data leads to a very different tree
● Easy to overfit!

○ Learn perfectly on training data, but generalize poorly to test data



Classifying Mammals vs. Non-mammals

Image Source

http://www-users.cs.umn.edu/~kumar/dmbook/ch4.pdf


Overfitting

Fits training data 
perfectly; accuracy is 
poor on test data! Accuracy is less than 

perfect on training data; 
but tree is simpler, and 
accuracy is better on 
test data!

Image Source

http://www-users.cs.umn.edu/~kumar/dmbook/ch4.pdf


Classifying Mammals vs. Non-mammals

Training data Test data
Mislabeled!

Image Source

http://www-users.cs.umn.edu/~kumar/dmbook/ch4.pdf


Overfitting

Image Source

http://www-users.cs.umn.edu/~kumar/dmbook/ch4.pdf


Key Design Decisions
What is the best size for the tree?
● Pre-pruning

○ Stop growing the tree when:
■ its depth reaches some threshold 
■ there are fewer than some threshold number of observations at a node
■ when the impurity measure no longer decreases by “enough”

● But how much is “enough”? It is difficult, if not impossible, to know.

●  Post-pruning
○ Replace small subtrees with leaf nodes
○ Determine class by majority vote among observations in the subtree



Model Selection
Find a model that appropriately balances complexity and generalization 
capabilities: i.e., that optimizes the bias-variance tradeoff.

● Low bias, high variance
○ Trees of unlimited depth and (no minimum) node size

● High bias, low variance
○ Set some minimum node size, only adding predictors whose children are big enough
○ Set some minimum improvement threshold, only adding predictors that are good enough



Other complications
● How to fill in missing values

● How to split on numerical values
○ Temperature is in degrees rather than hot vs cold
○ One option is to bin values (> 75 vs. < 75)

● How to handle noisy labels: identical observations with different labels



Decision Trees in R



Decision Trees in R
● R provides the rpart package for decision trees

● The package create trees as follows:
> library(rpart)
> fit <- rpart(city ~ elevation + beds + bath + sqft)

● Trees can be visualized using the rpart.plot library:
> library(rpart.plot)
> rpart.plot(fit, type = “class”)



Controlling rpart models
● Often, we can improve performance by tweaking parameters

● rpart.control provides these parameters for decision trees
○ minsplit  is the minimum number of observations that must exist to split
○ minbucket  is the minimum number of observations that must exist in each leaf
○ maxdepth  is the maximum depth of the decision tree
○ xval is the number of cross validations to perform

● Usage:
fit <- rpart(y ~ x, data = frame,
             control = rpart.control(maxdepth = 10))



Missing data
● Sometimes certain features will be missing in the training data
● rpart automatically handles missing data using surrogate splits
● Surrogates are fake values that rpart substitutes for NAs
● They are used on missing test data, as well as missing training data
● It is sometimes difficult to find appropriate surrogates for missing data



A decision tree for iris



A decision tree for iris



Misclassification error for the 
decision tree for  iris



Percentage of the dataset that 
appears at or below the node

Proportion of each class in node
(0% setosa, 50% versicolor, 50% virginica)

library(rpart)
library(rpart.plot)
fit <- rpart(Species ~ Sepal.Length + 
Sepal.Width + Petal.Length, data=iris)
rpart.plot(fit)



Decision tree is 
making some errors 
(11% of what is 
labelled virginica is 
actually versicolor)

The label that 
the decision 
tree assigns to 
the node

library(rpart)
library(rpart.plot)
fit <- rpart(Species ~ Sepal.Length + 
Sepal.Width + Petal.Length, data=iris)
rpart.plot(fit)

Percentage of the dataset that 
appears at or below the node

Proportion of each class in node
(0% setosa, 50% versicolor, 50% virginica)



Extras
Adapted from Visual Intro to Machine Learning

http://www.r2d3.us/visual-intro-to-machine-learning-part-1/


San Francisco and New York

● Data on NYC and SF apartments

● Green = SF & Blue = NYC

● We can look at a scatterplot matrix, a set of

scatterplots comparing different features

● We can already see some patterns in the data

● Let’s look at elevation on its own first



Elevation

● NYC is lower than SF

● We could pick a convenient point, 

like the highest NYC house at 73m, 

and classify using that

● Houses above 73m are in SF, 

below 73m are in NYC



Elevation

● NYC < 73m, SF > 73m

preds <- ifelse(apartments$elevation <= breakpoint, "NYC", "SF")

● Accuracy on training data is only 63%

● Barely better than guessing



Elevation

● We classify all houses about 73m correctly, but misclassify a lot below that 

height, called “false negatives”

● If we split on a lower height, we then misclassify many NYC homes, but we 

could get better accuracy overall



Elevation

● We accept some false positives, incorrectly classified NYC homes,

in order to get a better overall error rate

● We can still improve our accuracy



After the split

● Here are histograms for each side of the split, lower elevation on the left 

and higher elevation on the right

● We can see more patterns arising in these additional features

● What if we kept splitting?



Split all the things!

● We’ve partitioned our data once, why not split on different features?

● For low elevation houses, splitting on price per square foot gives the best 

results; same as price for high elevation houses



Just keep splitting

● For each split, we keep splitting and eventually make a decision tree


