Plan for the week

Classification
e M: k-nearest neighbors

e W: Decision Trees

e Model Selection
o Bias-Variance Tradeoff
o Cross Validation

e Friday Section
o Bayes’ Rule
o HW 2 Review



Refresher:
Overview of Machine Learning




Types of Machine Learning

Supervised learning Unsupervised learning

Discrete Classification Clustering
(Dimensionality Reduction)

Continuous Regression Density Estimation
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https://chatbotsmagazine.com/lets-know-supervised-and-unsupervised-in-an-easy-way-9168363e06ab

Su pervised Lea rning (a.k.a. Function approximation)

e Learning from labeled data

e This labeled data is called training data, and consists of
observations and corresponding labels (a.k.a. ground truth).

e The goal of a supervised learning algorithm is to approximate
a function that generalizes well to unseen examples.

e Supervised algorithms are typically evaluated on test data,
which is distinct from training data.



Supervised Learning

Given a labeled set of training data D = {(x,., yl.) |i=1, ..., n},
where each x.is an instance and each y. is a label, the goal of a
supervised learner is to learn a function from instances to labels,
so that it can appropriately label instances in the test data
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https://tentangdata.wordpress.com/tag/supervised-learning/

Supervised Learning

GLASSIFIGATION vs
REGRESSION

Classification Regression



https://chatbotsmagazine.com/lets-know-supervised-and-unsupervised-in-an-easy-way-9168363e06ab

Classification

e Supervised learning when labels are categorical
e Binary classification: Spam or not? Malignant or benign?

e Multiclass classification: Part-of-speech tagging,
Face recognition, Spell checking.

e Popular algorithms:

Logistic Regression

Naive Bayes

Decision trees (easily adopted to regression, as well)

O
O
O
o k nearest neighbor (easily adopted to regression, as well)



Errors




Evaluation Metrics

The results of a binary classification task can be
depicted in matrix form, in a confusion matrix

Accuracy is the ratio of correct classifications to all
classifications: (TP + TN) / (P + N)

Error is the ratio of incorrect classifications to all
classifications: (FP + FN) / (P + N)
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http://tex.stackexchange.com/questions/20267/how-to-construct-a-confusion-matrix-in-latex

Evaluation Metrics

The results of a binary classification task can be

depicted in matrix form, in a confusion matrix

Sensitivity is the true positive rate: proportion of positives
correctly identified as such (TP / (TP + FN))

o Also called recall or the hit-rate
o) Remember: FNs are positive!

Specificity is the true negative rate: proportion of negatives

correctly identified as such (TN / (FP + TN))

o  The opposite of specificity (FP / (FP + TN)) is called the fall-out rate
o Remember: FPs are negative!

Precision is the proportion of true positives among all
predicted positives (TP / (TP + FP))
The F_ score is the harmonic mean of precision and recall:

l.e., 2/ ((1 / precision) + (1 / recall)) = 2 (precision - recall) / (precision + recall)

relevant elements
I 1

false negatives true negatives

selected elements

How many selected How many relevant
items are relevant? items are selected?

Precision = Recall = ——
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https://en.wikipedia.org/wiki/Precision_and_recall

k Nearest Neighbors




k Nearest Neighbors

To classify an observation:
e Look at the labels of some number, say k, of neighboring observations.
e The observation is then classified based on its nearest neighbors’ labels,
using, for example, majority vote.
There is no learning phase.


http://facebook.com/simpleideasuez/

Example

Let’s try to classify the unknown green point
by looking at k = 3 and k = nearest neighbors

For k = 3, we see 2 triangles and 1 square;
so we might classify the point as a triangle

For k =5, we see 2 triangles and 3 squares;
so we might classify the point as a square

Typically, we classify by some variant of majority
vote, so use an odd value of k to avoid ties
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https://www.analyticsvidhya.com/blog/2018/03/introduction-k-neighbours-algorithm-clustering/

Classifying i ris

We're going to demonstrate the use of k-NN on the i~ i s data set
(the flower, not the part of your eye)

> iris

Sepal.Length Sepal.width Petal.Length Petal.width Species
1 55l 3:5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
8 4.7 3.2 1.3 0.2 setosa
4 4.6 3.4 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
7 4.6 3.4 1.4 0.3 setosa
8 5.0 3.4 1.5 0.2 setosa
9 4.4 2:9 1.4 0.2 setosa
10 4.9 3. 1.5 0.1 setosa
11 5.4 3.7 1.5 0.2 setosa
12 4.8 3.4 1.6 0.2 setosa
13 4.8 3.0 1.4 0.1 setosa
14 4.3 3.0 1.1 0.1 setosa
15 5.8 4.0 1.2 0.2 setosa



Iris versicolor

- Iris virginica
Iris setosa g



1ri1ls

e 3 species (i.e., classes) of iris

o

o

O

Iris setosa
Iris versicolor
Iris virginica

e 50 observations per species

e 4 variables per observation

o

o

O

O

Sepal length
Sepal width
Petal length
Petal width

Stamen

-
Y
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http://study.com/academy/lesson/ovary-of-a-flower-function-definition-quiz.html

Visualizing the data
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A new observation

New orange point

new polnt <- data.frame

(Sepal.Length = 7.2,
Sepal.Width = 3.2
Petal.Length = 6.4
Petal.Width = 2.4

)
Let’s run k-NN in R with k=3
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How does it work?

e Since k=3, R finds the new
point’s closest 3 neighbors

e These are all virginica, so it’s
easy to classify the new point

e The new observation also gets
classified as virginica



Another observation

® This one’s a bit more ambiguous

new polnt <- data.frame

(Sepal.Length = 6.4

Sepal.Width = 2.8
Petal.Length = 4.9
Petal.Width = 1.3

e What should we expect?
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Another observation

[1] k = 3
[1] versicolor




Another observation




Another observation

] k=3

] versicolor
] k=5

] virginica
] k =11

] versicolor
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Decision Regions

Decision regions are regions
where observations are classified
one way or another

For , there are three
species, and three (approximate)
decision regions
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Decision Boundaries

e (Linear) decision boundaries are
lines that separate decision regions

Versicolor

e On the boundaries, classifiers may
give ambiguous results
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e Changing parameters, like k in s NN g
k-NN, changes both the decision S s
regions and their boundaries e N Virginica

e Let’svary k and see what happens

iris$Petal.Length



Decision Boundaries

e Let’s take a closer look at decision

boundaries for k-NN T
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Small k

o k=1
e Low bias

e Models like this are overfit
o Read too much into the training data,
extrapolating based on things that
aren’t necessarily relevant

e High variance: model varies
greatly with the data

X



Large k

e k=101
e High bias

e Rather than being overfit, this

model is underfit
o The decision boundary doesn’t
capture enough of the relevant
information encoded in the
training data

N
-

e Low variance: model barely o— 0
varies with the data



Model Selection

Goal: minimize generalization error
o A.k.a., Out-of-sample error, or Risk
o l.e., the error on new data

e Trade off bias vs. variance
e k=15 “eems” just right

e This choice can/should be
optimized using cross validation




3D and Beyond

e Our visualizations depicted only two features

e But k-NNis not limited to only two features

e k-NN can also use 3, 4, ...., n features

iris$Petal.Length
1.2 3 4 5 6 7

° uses all available numeric features

iris$Sepal.Length
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Key Design Decisions

e Choose k
o Choose a threshold

e Define “neighbor”
o Define a measure of distance/closeness
(Make sure measurement values are comparable)

e Decide how to classify based on neighbors’ labels
o By a majority vote, or
o By a weighted majority vote (weighted by distance), or ...



Model Selection

Find a model that appropriately balances complexity and generalization
capabilities: i.e., that optimizes the bias-variance tradeoff.

e High bias, low variance
o A high value of k indicates a high degree of bias, but contains the variance

e Low bias, high variance
o  With low values of k, the very jagged decision boundaries are a sign of high variance



k-NN caveats

e k-NN can be very slow, especially for very large data sets
o k-NNis not a learning algorithm in the traditional sense, because it doesn’t actually do
any learning: i.e., it doesn’t preprocess the data
o Instead, when it is given a new observation, it calculates the distance between that
observation and every existing observation in the data set

e k-NN works better with quantitative data than categorical data
o Data must be quantitative to calculate distances
o  So categorical data must be transformed

e Without clusters in the training data, k-NN cannot work well



KNN in R




INn R

R provides a function in the library

: training data for the k-NN classifier
: testing data to classify
: class labels
: the number of neighbors



knn in R (cont’d)

> knn (data.frame (iris$Petal.Length, iris$Sepal.Length),
data.frame (new point$Petal.Length,
new pointS$Sepal.Length),
irisS$SSpecies,
k = 3)

[1] virginica
Levels: setosa versicolor virginica



knn in R (cont’d)

> knn (data.frame (iris$SPetal.Length,

irisS$SSepal.Length,
irisSSepal.Width),

data.frame (new point$Petal.Length,
new point$Sepal.Length,
new point$Sepal.Width),

irisS$SSpecies,

k = 11)

[1] virginica
Levels: setosa versicolor virginica



knn in R (cont’d)

# Create training and test data
shuffled <- sample n(iris, nrow(iris))
split <- 0.8 * nrow(shuffled)

training data <- shuffled[l:split, 1:4]
test data <- shuffled[ (split + 1) :nrow(shuffled), 1:4]

training labels <- shuffled[l:split, 5]
correct labels <- shuffled[(split + 1) :nrow(shuffled),

iris pred <- knn(training data,
test data,
training labels,
k = 5)

5]



in R (cont’d)

iris_pred
correct_labels setosa versicolor virginica
setosa 10 0 0
versicolor 0 9 1

virginica 0 0 10



