
Plan for the week
Classification
● M: k-nearest neighbors

● W: Decision Trees

● Model Selection
○ Bias-Variance Tradeoff
○ Cross Validation

● Friday Section
○ Bayes’ Rule
○ HW 2 Review

Refresher:
Overview of Machine Learning

Types of Machine Learning
Supervised learning Unsupervised learning

Discrete Classification Clustering
(Dimensionality Reduction)

Continuous Regression Density Estimation

Image Source

https://chatbotsmagazine.com/lets-know-supervised-and-unsupervised-in-an-easy-way-9168363e06ab

Supervised Learning (a.k.a. Function approximation)

● Learning from labeled data

● This labeled data is called training data, and consists of
observations and corresponding labels (a.k.a. ground truth).

● The goal of a supervised learning algorithm is to approximate
a function that generalizes well to unseen examples.

● Supervised algorithms are typically evaluated on test data,
which is distinct from training data.

Given a labeled set of training data D = {(x
i
, y

i
) | i = 1, …, n},

where each x
i
 is an instance and each y

i
 is a label, the goal of a

supervised learner is to learn a function from instances to labels,
so that it can appropriately label instances in the test data

Image Source

Supervised Learning

https://tentangdata.wordpress.com/tag/supervised-learning/

Image Source

Supervised Learning

https://chatbotsmagazine.com/lets-know-supervised-and-unsupervised-in-an-easy-way-9168363e06ab

Classification
● Supervised learning when labels are categorical

● Binary classification: Spam or not? Malignant or benign?

● Multiclass classification: Part-of-speech tagging,
Face recognition, Spell checking.

● Popular algorithms:
○ Logistic Regression
○ Naive Bayes
○ Decision trees (easily adopted to regression, as well)
○ k nearest neighbor (easily adopted to regression, as well)

Errors

Evaluation Metrics
The results of a binary classification task can be

depicted in matrix form, in a confusion matrix
● Accuracy is the ratio of correct classifications to all

classifications: (TP + TN) / (P + N)

● Error is the ratio of incorrect classifications to all

classifications: (FP + FN) / (P + N)

Image Source

http://tex.stackexchange.com/questions/20267/how-to-construct-a-confusion-matrix-in-latex

Evaluation Metrics
The results of a binary classification task can be

depicted in matrix form, in a confusion matrix
● Sensitivity is the true positive rate: proportion of positives

correctly identified as such (TP / (TP + FN))
○ Also called recall or the hit-rate

○ Remember: FNs are positive!

● Specificity is the true negative rate: proportion of negatives

correctly identified as such (TN / (FP + TN))
○ The opposite of specificity (FP / (FP + TN)) is called the fall-out rate

○ Remember: FPs are negative!

● Precision is the proportion of true positives among all

predicted positives (TP / (TP + FP))

● The F
1
 score is the harmonic mean of precision and recall:

I.e., 2 / ((1 / precision) + (1 / recall)) = 2 (precision ⋅ recall) / (precision + recall)
Image Source

https://en.wikipedia.org/wiki/Precision_and_recall

k Nearest Neighbors

 k Nearest Neighbors
To classify an observation:
● Look at the labels of some number, say k, of neighboring observations.
● The observation is then classified based on its nearest neighbors’ labels,

using, for example, majority vote.
There is no learning phase.

Image Source

http://facebook.com/simpleideasuez/

Example
● Let’s try to classify the unknown green point

by looking at k = 3 and k = nearest neighbors

● For k = 3, we see 2 triangles and 1 square;
so we might classify the point as a triangle

● For k = 5, we see 2 triangles and 3 squares;
so we might classify the point as a square

● Typically, we classify by some variant of majority
vote, so use an odd value of k to avoid ties Image Source

https://www.analyticsvidhya.com/blog/2018/03/introduction-k-neighbours-algorithm-clustering/

Classifying iris
We’re going to demonstrate the use of k-NN on the iris data set
(the flower, not the part of your eye)

Iris setosa Iris virginica

Iris versicolor

iris
● 3 species (i.e., classes) of iris

○ Iris setosa
○ Iris versicolor
○ Iris virginica

● 50 observations per species

● 4 variables per observation
○ Sepal length
○ Sepal width
○ Petal length
○ Petal width

Image Source

http://study.com/academy/lesson/ovary-of-a-flower-function-definition-quiz.html

Visualizing the data

A new observation
● New orange point

new_point <- data.frame
 (Sepal.Length = 7.2,
 Sepal.Width = 3.2,
 Petal.Length = 6.4,
 Petal.Width = 2.4)

● Let’s run k-NN in R with k = 3

How does it work?
● Since k = 3, R finds the new

point’s closest 3 neighbors

● These are all virginica, so it’s
easy to classify the new point

● The new observation also gets
classified as virginica

Another observation
● This one’s a bit more ambiguous

new_point <- data.frame
 (Sepal.Length = 6.4,
 Sepal.Width = 2.8,
 Petal.Length = 4.9,
 Petal.Width = 1.3)

● What should we expect?

Another observation
[1] k = 3
[1] versicolor

Another observation
[1] k = 3
[1] versicolor
[1] k = 5
[1] virginica

Another observation
[1] k = 3
[1] versicolor
[1] k = 5
[1] virginica
[1] k = 11
[1] versicolor

Decision Regions
● Decision regions are regions

where observations are classified
one way or another

● For iris, there are three
species, and three (approximate)
decision regions

Virginica

Versicolor

Setosa

Decision Boundaries
● (Linear) decision boundaries are

lines that separate decision regions

● On the boundaries, classifiers may
give ambiguous results

● Changing parameters, like k in
k-NN, changes both the decision
regions and their boundaries

● Let’s vary k and see what happens

Virginica

Versicolor

Setosa

Decision Boundaries
● Let’s take a closer look at decision

boundaries for k-NN

● To do so, let’s use a new data set

● Here are some random data,
classified as either 0 or 1

● These two classes overlap quite a
bit, compared to the iris data

k = 1

k = 3

k = 7

k = 15

k = 25

k = 51

k = 101

Small k
● k = 1

● Low bias

● Models like this are overfit
○ Read too much into the training data,

extrapolating based on things that
aren’t necessarily relevant

● High variance: model varies
greatly with the data

Large k
● k = 101

● High bias

● Rather than being overfit, this
model is underfit
○ The decision boundary doesn’t

capture enough of the relevant
information encoded in the
training data

● Low variance: model barely
varies with the data

Model Selection
● Goal: minimize generalization error

○ A.k.a., Out-of-sample error, or Risk
○ I.e., the error on new data

● Trade off bias vs. variance

● k = 15 “seems” just right

● This choice can/should be
optimized using cross validation

3D and Beyond
● Our visualizations depicted only two features

● But k-NN is not limited to only two features

● k-NN can also use 3, 4,, n features

● knn uses all available numeric features

Key Design Decisions
● Choose k

○ Choose a threshold

● Define “neighbor”
○ Define a measure of distance/closeness

(Make sure measurement values are comparable)

● Decide how to classify based on neighbors’ labels
○ By a majority vote, or
○ By a weighted majority vote (weighted by distance), or …

Model Selection
Find a model that appropriately balances complexity and generalization
capabilities: i.e., that optimizes the bias-variance tradeoff.

● High bias, low variance
○ A high value of k indicates a high degree of bias, but contains the variance

● Low bias, high variance
○ With low values of k, the very jagged decision boundaries are a sign of high variance

k-NN caveats
● k-NN can be very slow, especially for very large data sets

○ k-NN is not a learning algorithm in the traditional sense, because it doesn’t actually do
any learning: i.e., it doesn’t preprocess the data

○ Instead, when it is given a new observation, it calculates the distance between that
observation and every existing observation in the data set

● k-NN works better with quantitative data than categorical data
○ Data must be quantitative to calculate distances
○ So categorical data must be transformed

● Without clusters in the training data, k-NN cannot work well

kNN in R

knn in R
● R provides a knn function in the class library

 > library(class) # Use classification package

 > knn(train, test, cl, k)
● train: training data for the k-NN classifier
● test: testing data to classify
● cl: class labels
● k: the number of neighbors

> knn(data.frame(iris$Petal.Length, iris$Sepal.Length),
 data.frame(new_point$Petal.Length,
 new_point$Sepal.Length),
 iris$Species,
 k = 3)

[1] virginica
Levels: setosa versicolor virginica

knn in R (cont’d)

> knn(data.frame(iris$Petal.Length,
 iris$Sepal.Length,
 iris$Sepal.Width),
 data.frame(new_point$Petal.Length,
 new_point$Sepal.Length,
 new_point$Sepal.Width),
 iris$Species,
 k = 11)

[1] virginica
Levels: setosa versicolor virginica

knn in R (cont’d)

Create training and test data
shuffled <- sample_n(iris, nrow(iris))
split <- 0.8 * nrow(shuffled)

training_data <- shuffled[1:split, 1:4]
test_data <- shuffled[(split + 1):nrow(shuffled), 1:4]

training_labels <- shuffled[1:split, 5]
correct_labels <- shuffled[(split + 1):nrow(shuffled), 5]

iris_pred <- knn(training_data,
 test_data,
 training_labels,
 k = 5)

knn in R (cont’d)

> table(correct_labels, iris_pred)

knn in R (cont’d)

