
Plan for the week
Classification
● M: k-nearest neighbors 

● W: Decision Trees

● Model Selection
○ Bias-Variance Tradeoff
○ Cross Validation

● Friday Section
○ Bayes’ Rule
○ HW 2 Review



Refresher:
Overview of Machine Learning



Types of Machine Learning
Supervised learning Unsupervised learning

Discrete Classification Clustering
(Dimensionality Reduction)

Continuous Regression Density Estimation

Image Source

https://chatbotsmagazine.com/lets-know-supervised-and-unsupervised-in-an-easy-way-9168363e06ab


Supervised Learning (a.k.a. Function approximation)

● Learning from labeled data

● This labeled data is called training data, and consists of 
observations and corresponding labels (a.k.a. ground truth).

● The goal of a supervised learning algorithm is to approximate
a function that generalizes well to unseen examples.

● Supervised algorithms are typically evaluated on test data, 
which is distinct from training data.



Given a labeled set of training data D = {(x
i
, y

i
) | i = 1, …, n},

where each x
i
 is an instance and each y

i 
 is a label, the goal of a 

supervised learner is to learn a function from instances to labels,
so that it can appropriately label instances in the test data

Image Source

Supervised Learning

https://tentangdata.wordpress.com/tag/supervised-learning/


Image Source

Supervised Learning

https://chatbotsmagazine.com/lets-know-supervised-and-unsupervised-in-an-easy-way-9168363e06ab


Classification
● Supervised learning when labels are categorical

● Binary classification: Spam or not? Malignant or benign?

● Multiclass classification: Part-of-speech tagging,
Face recognition, Spell checking.

● Popular algorithms:
○ Logistic Regression
○ Naive Bayes
○ Decision trees (easily adopted to regression, as well)
○ k nearest neighbor (easily adopted to regression, as well)



Errors



Evaluation Metrics
The results of a binary classification task can be 

depicted in matrix form, in a confusion matrix
● Accuracy is the ratio of correct classifications to all 

classifications: (TP + TN) / (P + N)

● Error is the ratio of incorrect classifications to all 

classifications: (FP + FN) / (P + N)

Image Source

http://tex.stackexchange.com/questions/20267/how-to-construct-a-confusion-matrix-in-latex


Evaluation Metrics
The results of a binary classification task can be 

depicted in matrix form, in a confusion matrix
● Sensitivity is the true positive rate: proportion of positives 

correctly identified as such (TP / (TP + FN))
○ Also called recall or the hit-rate

○ Remember: FNs are positive!

● Specificity is the true negative rate: proportion of negatives 

correctly identified as such (TN / (FP + TN))
○ The opposite of specificity (FP / (FP + TN)) is called the fall-out rate

○ Remember: FPs are negative!

● Precision is the proportion of true positives among all 

predicted positives (TP / (TP + FP))

● The F
1
 score is the harmonic mean of precision and recall:

I.e., 2 / ((1 / precision) + (1 / recall)) = 2 (precision ⋅ recall) / (precision + recall)  
Image Source

https://en.wikipedia.org/wiki/Precision_and_recall


k Nearest Neighbors



 k Nearest Neighbors
To classify an observation:
● Look at the labels of some number, say k, of neighboring observations.
● The observation is then classified based on its nearest neighbors’ labels, 

using, for example, majority vote.
There is no learning phase.

Image Source

http://facebook.com/simpleideasuez/


Example
● Let’s try to classify the unknown green point 

by looking at k = 3 and k = nearest neighbors

● For k = 3, we see 2 triangles and 1 square;
so we might classify the point as a triangle

● For k = 5, we see 2 triangles and 3 squares;
so we might classify the point as a square

● Typically, we classify by some variant of majority 
vote, so use an odd value of k to avoid ties Image Source

https://www.analyticsvidhya.com/blog/2018/03/introduction-k-neighbours-algorithm-clustering/


Classifying iris
We’re going to demonstrate the use of k-NN on the iris data set
(the flower, not the part of your eye) 



Iris setosa Iris virginica

Iris versicolor



iris
● 3 species (i.e., classes) of iris

○ Iris setosa
○ Iris versicolor
○ Iris virginica

● 50 observations per species

● 4 variables per observation
○ Sepal length
○ Sepal width
○ Petal length
○ Petal width

Image Source

http://study.com/academy/lesson/ovary-of-a-flower-function-definition-quiz.html


Visualizing the data



A new observation
● New orange point

new_point <- data.frame
   (Sepal.Length = 7.2,
    Sepal.Width  = 3.2,
    Petal.Length = 6.4,
    Petal.Width  = 2.4)

● Let’s run k-NN in R with k = 3



How does it work?
● Since k = 3, R finds the new 

point’s closest 3 neighbors

● These are all virginica, so it’s 
easy to classify the new point

● The new observation also gets 
classified as virginica



Another observation
● This one’s a bit more ambiguous

new_point <- data.frame
   (Sepal.Length = 6.4,
    Sepal.Width  = 2.8,
    Petal.Length = 4.9,
    Petal.Width  = 1.3)

● What should we expect?



Another observation
[1] k = 3
[1] versicolor



Another observation
[1] k = 3
[1] versicolor
[1] k = 5
[1] virginica



Another observation
[1] k = 3
[1] versicolor
[1] k = 5
[1] virginica
[1] k = 11
[1] versicolor



Decision Regions
● Decision regions are regions 

where observations are classified 
one way or another

● For iris, there are three 
species, and three (approximate) 
decision regions

Virginica

Versicolor

Setosa



Decision Boundaries
● (Linear) decision boundaries are 

lines that separate decision regions

● On the boundaries, classifiers may 
give ambiguous results

● Changing parameters, like k in 
k-NN, changes both the decision 
regions and their boundaries

● Let’s vary k and see what happens

Virginica

Versicolor

Setosa



Decision Boundaries
● Let’s take a closer look at decision 

boundaries for k-NN

● To do so, let’s use a new data set

● Here are some random data, 
classified as either 0 or 1

● These two classes overlap quite a 
bit, compared to the iris data



k = 1



k = 3



k = 7



k = 15



k = 25



k = 51



k = 101



Small k
● k = 1

● Low bias

● Models like this are overfit
○ Read too much into the training data, 

extrapolating based on things that 
aren’t necessarily relevant

● High variance: model varies 
greatly with the data



Large k
● k = 101

● High bias

● Rather than being overfit, this 
model is underfit
○ The decision boundary doesn’t 

capture enough of the relevant 
information encoded in the 
training data

● Low variance: model barely 
varies with the data



Model Selection
● Goal: minimize generalization error

○ A.k.a., Out-of-sample error, or Risk
○ I.e., the error on new data

● Trade off bias vs. variance

● k = 15 “seems” just right

● This choice can/should be 
optimized using cross validation



3D and Beyond
● Our visualizations depicted only two features

● But k-NN is not limited to only two features

● k-NN can also use 3, 4, ...., n features

● knn uses all available numeric features



Key Design Decisions
● Choose k

○ Choose a threshold

● Define “neighbor”
○ Define a measure of distance/closeness

(Make sure measurement values are comparable)

● Decide how to classify based on neighbors’ labels
○ By a majority vote, or
○ By a weighted majority vote (weighted by distance), or …



Model Selection
Find a model that appropriately balances complexity and generalization 
capabilities: i.e., that optimizes the bias-variance tradeoff.

● High bias, low variance
○ A high value of k indicates a high degree of bias, but contains the variance

● Low bias, high variance
○ With low values of k, the very jagged decision boundaries are a sign of high variance



k-NN caveats
● k-NN can be very slow, especially for very large data sets

○ k-NN is not a learning algorithm in the traditional sense, because it doesn’t actually do 
any learning: i.e., it doesn’t preprocess the data

○ Instead, when it is given a new observation, it calculates the distance between that 
observation and every existing observation in the data set

● k-NN works better with quantitative data than categorical data
○ Data must be quantitative to calculate distances
○ So categorical data must be transformed

● Without clusters in the training data, k-NN cannot work well



kNN in R



knn in R
● R provides a knn function in the class library

 > library(class) # Use classification package
 
 > knn(train, test, cl, k)
● train: training data for the k-NN classifier
● test: testing data to classify
● cl: class labels
● k: the number of neighbors



> knn(data.frame(iris$Petal.Length, iris$Sepal.Length),      
      data.frame(new_point$Petal.Length,        
                 new_point$Sepal.Length),
      iris$Species,
      k = 3)

[1] virginica
Levels: setosa versicolor virginica

knn in R (cont’d)



> knn(data.frame(iris$Petal.Length,
                 iris$Sepal.Length,        
                 iris$Sepal.Width),      
      data.frame(new_point$Petal.Length,               
                 new_point$Sepal.Length,                    
                 new_point$Sepal.Width),
      iris$Species,
      k = 11)

[1] virginica
Levels: setosa versicolor virginica

knn in R (cont’d)



# Create training and test data
shuffled <- sample_n(iris, nrow(iris))
split <- 0.8 * nrow(shuffled)

training_data <- shuffled[1:split, 1:4]
test_data <- shuffled[(split + 1):nrow(shuffled), 1:4]

training_labels <- shuffled[1:split, 5]
correct_labels <- shuffled[(split + 1):nrow(shuffled), 5]

iris_pred <- knn(training_data, 
                 test_data,
                 training_labels,
                 k = 5)

knn in R (cont’d)



> table(correct_labels, iris_pred)

knn in R (cont’d)


