iClicker Question

How much do you care about theory vs. practice re: data science?

- A. I love the theory
- B. Everything in moderation
- C. I only care about the practice

Properties of Estimators

What is an Estimator?

- A point estimator is a function that takes data (i.e., a sample) as input, and produces point estimates as output.
 - The sample mean function outputs the mean of its input.
 - Likewise, the sample variance function outputs the variance of its input.
- Note the nomenclature: a point estimator is a rule for generating point estimates.
 - "Average all the values in the sample" is a rule/function.
 - The average of all the values in a particular sample is an estimate.

Example: Normal RVs

- Assume n i.i.d. (independent and identically distributed) normally-distributed random variables $X_1, X_2, ..., X_n$ with mean μ and standard deviation σ .
- The function \bar{X} that maps a sample $x_1, x_2, ..., x_n$ drawn i.i.d. from $X_1, X_2, ..., X_n$ to $(1/n) \sum x_i$ (i.e., the sample mean function) is an estimator of the mean μ .

Example: Bernoulli RVs

- Assume n i.i.d. (independent and identically distributed) Bernoulli random variables $X_1, X_2, ..., X_n$ with parameter p.
- The sum of these Bernoulli RVs is a binomial RV with mean np.
- The function p that maps a sample $x_1, x_2, ..., x_n$ drawn i.i.d. from $X_1, X_2, ..., X_n$ to $(1/n) \sum x_i$ (i.e., the sample proportion function) is an estimator of np/n = p.

Evaluating Estimators (and Estimates)

- Any function of the data is an estimator!
- So how do we know we've got a good one?
- Desiderata:
 - In the limit, as the sample size tends to ∞, a consistent estimator converges to the model parameter it is estimating
 - An estimator is called unbiased if its expected value is the model parameter it is estimating
 - The efficiency of an estimator measures the quantity of data necessary to produce a certain quality estimate

Consistency

- An estimator is consistent if its value approaches its true value as the sample size tends to ∞.
- Consistent estimators become more accurate as the sample size increases.
- Is the sample mean a consistent estimator? Why or why not?

Bias

- Suppose $heta^*$ is our model parameter, and heta is our estimator
- The function θ applied to data $x \sim X$ yields a point estimate
- $E_{x^{-}x}[\theta(x)]$ is the expected value of the estimator
- Bias $[\theta, \theta^*] = E_{x \sim x}[\theta(x)] \theta^*$
- If Bias[θ , θ *] = 0, then θ is called unbiased
- If an estimator is unbiased, then in expectation, it yields an accurate prediction of the model parameter

Example: Sample mean

- Let $\bar{X} = (1/n) \sum x_i$, represent the sample mean estimator.
- Bias $[\overline{X}, \mu] = E_{x \sim X}[\overline{X}] \mu = E_{x \sim X}[(1/n) \sum x_i] \mu = (1/n) \sum E_{x \sim X}[x_i] \mu = (1/n) \sum \mu = (1/n) n\mu \mu = \mu \mu = 0.$
- Since μ was arbitrary, the sample mean estimator is unbiased.

Example: Sample proportion

- Let $\bar{X} = (1/n) \sum x_i$, represent the sample proportion estimator.
- Bias $[\bar{X}, p] = E_{x \sim X}[\bar{X}] p = E_{x \sim X}[(1/n) \sum x_i] p = (1/n) \sum E_{x \sim X}[x_i] p = (1/n) \sum p = (1/n) np p = p p = 0.$
- Since p was arbitrary, the sample proportion estimator is unbiased.

Example: Sample variance

- The sample variance is not unbiased.
- But we can make it unbiased by dividing by n-1 instead of n.
 - o <u>Proof</u>

Examples, continued

- But X_1 and X_2 and so on are also unbiased.
- So why is \bar{X} a better estimator than X_1 (or X_2 , and so on)?
- Given two unbiased estimators, the preferred one is the one with lower variance (i.e., the more efficient one):

Best Linear Unbiased Estimators (BLUE)

- The sample mean is the most efficient estimator of the population mean, among all other weighted averages that are also unbiased estimators.
- This result follows from the Gauss-Markov theorem, which states that the OLS estimators b_0 , b_1 are the most efficient among all linear unbiased estimators, under standard assumptions.

Extras

Linear Model

- The distribution of X is arbitrary.
- The distribution of Y depends on that of X = x in a linear fashion:
 - \circ Y is distributed with mean $\beta_0 + \beta_1 x$.
- Find β_0 and β_1 that minimize the mean squared error:
 - $\circ \quad (\beta_0, \beta_1) \text{ s.t } E[(Y \beta_0 + \beta_1 x)^2 \mid X = x] \text{ is minimized}$

Linear Model (cont'd)

- The distribution of X is arbitrary.
- The distribution of Y depends on that of X = x in a linear fashion:
 - Y is distributed with mean $\beta_0 + \beta_1 x$.
- Find β_0 and β_1 that minimize the mean squared error:
 - $\circ (\beta_0, \beta_1) \text{ s.t } \vec{E}[(Y \beta_0 + \beta_1 x)^2 \mid X = x] \text{ is minimized}$
- Solve as usual with calculus:
 - Take partial derivatives, and set them equal to zero.
- Out pops:
 - $\circ \quad \beta_0 = E[Y] \beta_1 E[X]$
 - $\circ \quad \beta_1 = \text{Cov}[X, Y] / \text{Var}[X] = \text{Corr}[X, Y] \sigma_v / \sigma_v$

- $\begin{array}{ll} \circ & b_0 = \overline{y} b_1 \overline{x} \\ \circ & b_1 = r_{xy} (s_{yy} / s_{yy}) \end{array}$
- The same answer as before—in expectation!

The Noise

- Given X = x, Y is distributed with mean $\beta_0 + \beta_1 x$.
 - Given $X = x_i$, $Y_i = \beta_0 + \beta_1 x_i + \epsilon_n$, for all $1 \le i \le n$.
 - This noise is described by the random variables ε_r .
 - It represents aspects of Y that are not determined by X.

Assumptions

- The conditional expectation of the noise terms is 0: $E[\varepsilon_i \mid X = x_i] = 0$ (because any non-zero conditional expectation could be built into the model).
- The conditional variance of the noise terms is constant: $Var[\epsilon_i \mid X = x_i] = \sigma^2$.
- ο The noise terms are uncorrelated with one another: $Cov[ε_i = ε_i] = 0$, for all $i \ne j$.
- Under these assumptions, b_0 and b_1 are unbiased and consistent estimators.
 - Unbiased, because the conditional expectation of the noise terms is 0.
 - Consistent, by the law of large numbers, and other assumptions of the model.

The Noise (cont'd)

- Given X = x, Y is distributed with mean $\beta_0 + \beta_1 x$.
 - Given $X = x_i$, $Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, for all $1 \le i \le n$.
 - \circ This noise is described by normal random variables ε_i .
 - It represents aspects of Y that are not determined by X.

Assumptions

- The conditional expectation of the noise terms is 0: $E[\varepsilon_i \mid X = x_i] = 0$ (because any non-zero conditional expectation could be built into the model).
- The conditional variance of the noise terms is constant: $Var[\varepsilon_i \mid X = x_i] = \sigma^2$.
- The noise terms are independent of one another.
- Under these assumptions, the b_0 and b_1 are MLE estimators.