Regression in Practice

Regression in Practice

- Regression Statistics
- Regression Diagnostics
- Data Transformations

Regression Statistics: How Good is a Fit?

Ice Cream Sales vs. Temperature

Linear Regression in R

> summary(lm(sales ~ temp))

Call: lm(formula = sales ~ temp)

Residuals:

Min	1Q	Median	3Q	Max
-74.467	-17.359	3.085	23.180	42.040

Coefficients:

	Estimate	Std. Erro	r t value	Pr(> t)					
(Intercept)	-122.988	54.76	1 -2.246	0.0513					
temp	28.427	2.81	6 10.096	3.31e-06	* * *				
Signif. code	es: 0 '**	**′ 0.001	`**′ 0.01	`*' 0.05	`. <i>'</i>	0.1	١	'	1

Residual standard error: 35.07 on 9 degrees of freedom Multiple R-squared: 0.9189, Adjusted R-squared: 0.9098 F-statistic: 101.9 on 1 and 9 DF, p-value: 3.306e-06 Interpreting the standard error: 95% of the observations should fall within +/- 1.96 standard deviations of the regression line, which for regression, defines a prediction interval

t-test

- Null hypothesis: The value of the coefficient is zero
- *t*-value: coefficient estimate divided by the SE
- Pr(>|t|) is a *p*-value

Linear Regression in R

> summary(lm(sales ~ temp))

Call: lm(formula = sales ~ temp)

Residuals:

Min	1Q	Median	ЗQ	Max
-74.467	-17.359	3.085	23.180	42.040

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) -122.988 54.761 -2.246 0.0513 . temp 28.427 2.816 10.096 3.31e-06 *** ---Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 35.07 on 9 degrees of freedom Multiple R-squared: 0.9189, Adjusted R-squared: 0.9098 F-statistic: 101.9 on 1 and 9 DF, p-value: 3.306e-06 Goodness of fit measures

- Residual standard error
- R^2 and adjusted R^2
- F statistic

Anatomy of Regression Errors

Anatomy of Regression Errors

Image Source

*R*²: Coefficient of Determination

- $R^2 = ESS / TSS$
- Interpretations:
 - The proportion of the variance in the dependent variable that the model explains.
 - The proportion of the variance in the dependent variable that independent variable predicts.
- Higher values of R^2 are preferred to lower values.
 - Caveat: Adding additional independent variables to the model almost always increases R².
 Adjusted R² adjusts for this increase by penalizing model complexity.
- *R*² is so called because it is mathematically equivalent to the square of the correlation coefficient, *r*.
 - Like r, R^2 is valid only for linear models.

<u>Proof that R² = correlation coefficient squared</u>

Straightforward algebra!

Standard Error of the Residuals

- A residual is a difference between a fitted value and an observed value.
- The residual error (RSS) is the sum of the squared residuals.
 - Intuitively, RSS is the error that the model does not explain.
- It is a measure of how far the data are from the regression line (i.e., the model), on average, expressed in the units of the dependent variable.
- The residual standard error is roughly the square root of the average residual error (RSS / n).
 - Technically, it's not $\sqrt{(RSS / n)}$, it's $\sqrt{(RSS / (n 2))}$; it's adjusted by degrees of freedom.

F Statistic

- The *F* statistic is the ratio of the error explained by the model to the residual error: ESS / RSS (adjusted by degrees of freedom).
- The *F* statistic is used to test the predictive power of the independent variable. In particular, does a non-zero coefficient improve the model?
- The *F* statistic extends naturally to multiple regression, where it is used to test the predictive power of *all* independent variables, to see how unlikely it is that *all* regression coefficients equal zero.
- Prob(F) is the probability that the null hypothesis is true: i.e., that *all* the regression coefficients are zero.

Violations are not always easy to detect!

- Assume a nonlinear relationship:
 - x <- rnorm(25, 10, 2)
 - e <- rnorm(25, 0, 1)
 - ∘ y <- x ** 2 + e
- Build a linear model:

Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -99.4095 3.9529 -25.15 <2e-16 *** x 20.3762 0.3833 53.16 <2e-16 *** ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.792 on 23 degrees of freedom Multiple R-squared: 0.9919, Adjusted R-squared: 0.9916 F-statistic: 2826 on 1 and 23 DF, p-value: < 2.2e-16

• R tells us the results are statistically significant, but a linear model is incorrect!

Standard Deviation = 2

Regression Diagnostics

Checking Linearity

- Always begin an analysis with EDA
- Plot dependent vs. independent variables
 - Is a linear relationship plausible?
 - Are there outliers?
- Example: a nonlinear relationship
 - x <- rnorm(25, 10, 10)
 - e <- rnorm(25, 0, 1)
 - ∘ y <- x ** 2 + e
- And a linear model

00 00

х

20

30

000 0 000

-10

0

Residual Plots

- A residual is the difference between a fitted and an observed value.
- A plot of residuals vs. fitted values should look like a formless cloud.
- If a model accurately captures the structure in the data, then all that should remain after the model is through making its predictions is random noise!

Scatter and Residual Plots of Old Faithful

• The scatter plot shows two clusters, one with low eruptions and low waiting time, and another with high eruptions and high waiting time

• There are diagonal stripes, suggesting a nonlinear pattern in the data

A Residual Plot for Ice Cream Sales

If there is non-randomness in your residuals, then your model is not explaining all that it can.

Outliers can gravely impact correlation

> cor(line\$x, line\$y)
[1] 1

> cor(outlier\$x, outlier\$y)
[1] 0

Outliers can gravely impact regression

- > line_model <- lm(line\$y ~ line\$x))</pre>
- > plot(line_model)
- > abline(line_model, col = "red")

- > outlier_model <- lm(outlier\$y ~ outlier\$x))</pre>
- > plot(outlier_model)
- > abline(outlier_model, col = "red")

Their impact can be seen in residual plots

> plot(residuals(line_model) ~
fitted(line_model))

> plot(residuals(outlier_model) ~
fitted(outlier_model))

How to handle outliers

- First, try to determine whether their removal can be justified.
 - Was a clerical error made in entering the data? Correct any obvious mistakes.
 - Check whether they might result from a failure to abide by the correct experimental procedure.
 - Look for any other possible explanations.
- If there are no convincing justifications for their removal, conduct analyses with and without the outliers, and report all results. Hopefully, their impact is minor.

Standardized Residuals

- A standardized residual is a residual divided by the standard deviation of the residuals. •
- A plot of standardized residuals vs. fitted values should (also) look like a formless cloud. •

35 8

38

-2 -4 -6 Ø.

> 15 28

Standardizing residuals can be useful for identifying outliers. •

Predicted

Predicted

Image Source

Summary

In a well-behaved plot of residuals vs. fitted values:

- The residuals bounce around the *x*-axis randomly; they don't smile or frown.
- No residuals stand out from the others, so there are no obvious outliers.
- They form a band around the 0 line; they don't funnel in or out.

Aside: Why plot residuals vs. fitted values, and not observations?

- Because residuals and fitted values are uncorrelated by construction.
- Residuals and observations may be correlated—they both depend on observations—which would make such plots harder to interpret.

Additional Residual Plots

- Plot residuals vs. independent variables
 - \circ Check for conditional expectation of 0
 - Check for constant conditional variance (homoskedacity)

Assumption: Errors are Homoskedastic

- Homoskedasticity means that the variance of the error term, conditional on *X*, is constant.
 - $Var[\varepsilon_i | X = x] = \sigma^2$
- In words, the errors should not funnel or fan, as we move along the x-axis.

What if Errors are Heteroskedastic?

- We can to adjust the way we calculate the standard error of our regression estimates if errors are heteroskedastic.
 - Doing this in base R is quite hard, but someone made an open-source function to take care of this for us; the function can be found <u>here</u>.
- When we build a linear model, we will store it first.
 - \circ mod <- lm(y ~ x)
- Then, we can use the summary.lm function in the library above.
 - summary.lm(mod, robust = TRUE) will make a correction in the calculation for standard error of the regression estimates when errors are heteroskedastic.

Data Transformations

Why are linear models so popular?

- Because linear models are simple!
 - Perhaps the simplest non-trivial relationship imaginable.
- Because true relationships are often close to linear in the domain of interest.
 - They are always linear on a small enough domain, so multiple simple linear models can be concatenated into one more complicated model.
- Because variables can be transformed to make relationships linear.
 - If your data suffer from non-linearity, transform the independent variables.
 - If your data suffer from heteroskedasticity, transform the dependent variable.

Data Transformations

Linear regression requires that the relationship between x and y be linear. What if the relationship is not linear? We can transform the data!

How?

- Log transformation
- Exponential transformation
- Polynomial (power) transformations (square root, square, cube, etc.)

What?

- We can transform the independent variable only.
- We can transform the dependent variable only.
- We can transform both the independent and dependent variables.

Logarithms

- To exponentiate is to raise a number to a power. For example, $10^2 = 100$.
- Calculating a logarithm is the inverse (opposite) of exponentiating:
 - A logarithm is an exponent that yields a number.
 - E.g., the log (short for logarithm) of 100 is 2.
 - To take logs requires a base, which we assumed to be 10 in this example.
- The function *e^x* is special (because its derivative is itself).
- Taking logs base *e* is also special, and is called the natural log (written ln(*x*)).
 - N.B. R (and most programming languages) default to computing ln(x) if no base is specified.

Data Transformations

• Transforming a non-linear (exponential) relationship into a linear one

 $y = x^{n}$ $y = cx^{n}$ $\log(y) = \log(x^{n})$ $= n \log(x)$ $\log(y) = \log(cx^{n})$ $= \log(c) + \log(x^{n})$ $= \log(c) + n \log(x)$ intercept

slope

An Example: Mammalian Brain Weights

> brains

Do mammals with heavier bodies have heavier (and hence, bigger) brains?

	Х	BrainWt	BodyWt
1	Arctic fox	44.500	3.385
2	Owl monkey	15.499	0.480
3	Beaver	8.100	1.350
4	Сом	423.012	464.983
5	Gray wolf	119.498	36.328
6	Goat	114.996	27.660
7	Roe deer	98.199	14.831
8	Guinea pig	5.500	1.040
9	Vervet	57.998	4.190
10	Chinchilla	6.400	0.425
11	Ground squirrel	4.000	0.101
12	Arctic ground_squirrel	5.700	0.920
13	African giant_pouched_rat	6.600	1.000

BodyWt vs. BrainWt

BrainWt vs. log (BodyWt)

log(BrainWt) vs.BodyWt

log(BrainWt) vs.log(BodyWt)

Residual Plot

This residual plot looks much better!

"Linear" Model

```
my_model <- lm(log(BrainWt) ~ log(BodyWt))
ggplot(data = brains,
mapping = aes(BodyWt, BrainWt)) +</pre>
```

```
geom_point() +
    xlim(c(0, 100)) + ylim(c(0, 500)) +
    stat_function(fun = function(x) (exp(1)
** my_model$coefficients[1] * x **
```

my_model\$coefficients[2]))

BodyWt and BrainWt

log(BodyWt) and log(BrainWt)

Extras

Relationships

- Y = a + bX
 - **Linear** relationship: *Y* increases proportionally with *X*.
 - A unit increase in X is associated with an additive increase in Y by b units.
- $Y = e^X$
 - Exponential relationship: Y increases "exponentially" with X.
 - A unit increase in X is associated with a factor of *e* increase in Y: a multiplicative increase in Y by *e* units.
- $Y = \ln(X)$
 - Logarithmic relationship: Y increases "logarithmically" with X.
 - A factor of *e* increase in *X* yields a unit increase in *Y*, because ln(eX) = ln(e) + ln(X) = 1 + ln(X).

Transformations

- Y = a + bX
 - As X increases linearly, Y increases linearly.
 - A unit increase in *X* is associated with an additive increase in *Y* by *b* units.
- $\ln(Y) = a + bX$, so that $Y = e^{(a + bX)}$
 - As X increases linearly, Y increases exponentially.
 - A unit increase in X is associated with an additive increase in ln(Y) by b units.
 - In other words, a unit increase in X is associated with a factor of e^b increase in Y.
- $Y = a + b \ln(X)$
 - As X increases multiplicatively, Y increases linearly.
 - A factor of *e* increase in *X* is associated with an additive increase in *Y* by *b* units, because $\ln(eX) = \ln(e) + \ln(X) = 1 + \ln(X)$, so $a + b \ln(eX) (a + b \ln(X)) = b$.

Transformations

- $\ln(Y) = a + b \ln(X)$, so that $Y = e^a X^b$
 - As X increases multiplicatively, Y increases polynomially.
 - A factor of k increase in X is associated with a factor of k^b increase in Y: a multiplicative increase in Y by k^b units, because $e^a(kX)^b - e^aX^b = k^b(e^aX^b) - e^aX^b$.
 - If b = 3, then doubling X (i.e., a factor of 2 increase) leads to a factor of 8 increase in Y.
 - If b = 2, then tripling X (i.e., a factor of 3 increase) leads to a factor of 9 increase in Y.

Image Source

Exponentials & Logarithms, Graphically

 e^x is a growth rate: after x time, growth increases by $e^x \ln(x)$ is the inverse of e^x : to grow by x takes $\ln(x)$ time

Linear Function on a Semi-log Plot

Linear Function on a Semi-log Plot

Image Source