
Regression in Practice



Regression in Practice
● Regression Statistics
● Regression Diagnostics
● Data Transformations



Regression Statistics:
How Good is a Fit?



Ice Cream Sales vs. Temperature

Image source 

http://www.sweetspotintelligence.com/en/wp-content/uploads/sites/5/2014/05/image023.png


Linear Regression in R
> summary(lm(sales ~ temp))

Call:
lm(formula = sales ~ temp)

Residuals:
    Min      1Q  Median      3Q     Max 
-74.467 -17.359   3.085  23.180  42.040 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -122.988     54.761  -2.246   0.0513 .  
temp          28.427      2.816  10.096 3.31e-06 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 35.07 on 9 degrees of freedom
Multiple R-squared:  0.9189, Adjusted R-squared:  0.9098 
F-statistic: 101.9 on 1 and 9 DF,  p-value: 3.306e-06

Interpreting the standard error: 
95% of the observations should 
fall within +/- 1.96 standard 
deviations of the regression 
line, which for regression, 
defines a prediction interval

t-test
● Null hypothesis: The value 

of the coefficient is zero
● t-value: coefficient 

estimate divided by the SE
● Pr(>|t|)is a p-value



Linear Regression in R
> summary(lm(sales ~ temp))

Call:
lm(formula = sales ~ temp)

Residuals:
    Min      1Q  Median      3Q     Max 
-74.467 -17.359   3.085  23.180  42.040 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -122.988     54.761  -2.246   0.0513 .  
temp          28.427      2.816  10.096 3.31e-06 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 35.07 on 9 degrees of freedom
Multiple R-squared:  0.9189, Adjusted R-squared:  0.9098 
F-statistic: 101.9 on 1 and 9 DF,  p-value: 3.306e-06

Goodness of fit measures

● Residual standard error

● R2 and adjusted R2

● F statistic



Anatomy of Regression Errors

Image Source

https://www.hackerearth.com/blog/wp-content/uploads/2016/12/anat.png


R2: Coefficient of Determination
● R2 = ESS / TSS

● Interpretations:
○ The proportion of the variance in the dependent variable that the model explains.
○ The proportion of the variance in the dependent variable that independent variable predicts.

● Higher values of R2 are preferred to lower values.
○ Caveat: Adding additional independent variables to the model almost always increases R2. 

Adjusted R2 adjusts for this increase by penalizing model complexity.

● R2 is so called because it is mathematically equivalent to the square of the 
correlation coefficient, r.

○ Like r, R2 is valid only for linear models.



Proof that R2 = correlation coefficient squared
Straightforward algebra!

https://statproofbook.github.io/P/slr-rsq#:~:text=Proof%3A%20Relationship%20between%20coefficient%20of,coefficient%20in%20simple%20linear%20regression&text=and%20consider%20estimation%20using%20ordinary,2%3Dr2xy.


Standard Error of the Residuals
● A residual is a difference between a fitted value and an observed value.

● The residual error (RSS) is the sum of the squared residuals.
○ Intuitively, RSS is the error that the model does not explain.

● It is a measure of how far the data are from the regression line (i.e., the 
model), on average, expressed in the units of the dependent variable.

● The residual standard error is roughly the square root of the average
residual error (RSS / n).

○ Technically, it’s not √(RSS / n), it’s √(RSS / (n - 2)); it’s adjusted by degrees of freedom.



F Statistic
● The F statistic is the ratio of the error explained by the model to the 

residual error: ESS / RSS (adjusted by degrees of freedom).

● The F statistic is used to test the predictive power of the independent 
variable. In particular, does a non-zero coefficient improve the model?

● The F statistic extends naturally to multiple regression, where it is used to 
test the predictive power of all independent variables, to see how unlikely 
it is that all regression coefficients equal zero.

● Prob(F) is the probability that the null hypothesis is true: i.e., that all the 
regression coefficients are zero.



Violations are not always easy to detect!
● Assume a nonlinear relationship:

○ x <- rnorm(25, 10, 2)
○ e <- rnorm(25, 0, 1)
○ y <- x ** 2 + e

● Build a linear model:

● R tells us the results are statistically 
significant, but a linear model is incorrect!

Standard Deviation = 2



Regression Diagnostics



Checking Linearity
● Always begin an analysis with EDA

● Plot dependent vs. independent variables
○ Is a linear relationship plausible?
○ Are there outliers?

● Example: a nonlinear relationship 
○ x <- rnorm(25, 10, 10)
○ e <- rnorm(25, 0, 1)
○ y <- x ** 2 + e

● And a linear model



Residual Plots
● A residual is the difference between a fitted and an observed value.
● A plot of residuals vs. fitted values should look like a formless cloud.
● If a model accurately captures the structure in the data, then all that should 

remain after the model is through making its predictions is random noise!

Standard Deviation = 2 Standard Deviation = 10



Scatter and Residual Plots of Old Faithful

● The scatter plot shows two clusters, one with low 

eruptions and low waiting time, and another with 

high eruptions and high waiting time

● The scatter plot is not a formless cloud

● There are diagonal stripes, suggesting a nonlinear 

pattern in the data



● This residual plot is a formless cloud.

● Thus, a linear model seems suitable. 

> fit <- lm(sales ~ temperature)
> plot(residuals(fit) ~ fitted(fit), 
ylab = "Residuals", xlab = "Fitted 
Values") + abline(a = 0, b = 0)

A Residual Plot for Ice Cream Sales

If there is non-randomness in your residuals, then your model is not explaining all that it can.



Outliers can gravely impact correlation
> cor(line$x, line$y)
[1] 1

> cor(outlier$x, outlier$y)
[1] 0



Outliers can gravely impact regression
> line_model <- lm(line$y ~ line$x))
> plot(line_model)
> abline(line_model, col = “red”)

> outlier_model <- lm(outlier$y ~ outlier$x))
> plot(outlier_model)
> abline(outlier_model, col = “red”)



Their impact can be seen in residual plots
> plot(residuals(line_model) ~ 
fitted(line_model))

> plot(residuals(outlier_model) ~ 
fitted(outlier_model))



How to handle outliers
● First, try to determine whether their removal can be justified.

○ Was a clerical error made in entering the data? Correct any obvious mistakes.
○ Check whether they might result from a failure to abide by the correct experimental procedure.
○ Look for any other possible explanations.

● If there are no convincing justifications for their removal, conduct analyses with and 
without the outliers, and report all results. Hopefully, their impact is minor.



Standardized Residuals
● A standardized residual is a residual divided by the standard deviation of the residuals.
● A plot of standardized residuals vs. fitted values should (also) look like a formless cloud. 
● Standardizing residuals can be useful for identifying outliers.

Image Source

In case it isn’t obvious, 
these plots are NOT 
formless clouds!

http://docs.statwing.com/interpreting-residual-plots-to-improve-your-regression/


Summary
In a well-behaved plot of residuals vs. fitted values:
● The residuals bounce around the x-axis randomly; they don’t smile or frown.
● No residuals stand out from the others, so there are no obvious outliers.
● They form a band around the 0 line; they don’t funnel in or out.

Aside: Why plot residuals vs. fitted values, and not observations?
● Because residuals and fitted values are uncorrelated by construction.
● Residuals and observations may be correlated—they both depend on 

observations—which would make such plots harder to interpret.



Additional Residual Plots
● Plot residuals vs. independent variables

○ Check for conditional expectation of 0

○ Check for constant conditional variance (homoskedacity)



Assumption: Errors are Homoskedastic 
● Homoskedasticity means that the variance of the error term,

conditional on X, is constant. 
○ Var[ε

i
 | X = x] = σ2

● In words, the errors should not funnel or fan, as we move along the x-axis. 

Image Source

https://statistics.laerd.com/statistical-guides/img/pearson-10.png


● We  can to adjust the way we calculate the standard error of our 
regression estimates if errors are heteroskedastic. 

○ Doing this in base R is quite hard, but someone made an open-source function to take 
care of this for us; the function can be found here.

● When we build a linear model, we will store it first.
○ mod <- lm(y ~ x)

● Then, we can use the summary.lm function in the library above. 
○ summary.lm(mod, robust = TRUE)  will make a correction in the calculation for 

standard error of the regression estimates when errors are heteroskedastic.

What if Errors are Heteroskedastic? 

https://economictheoryblog.com/2016/08/08/robust-standard-errors-in-r/


Data Transformations



Why are linear models so popular?
● Because linear models are simple!

○ Perhaps the simplest non-trivial relationship imaginable.

● Because true relationships are often close to linear in the domain of interest.
○ They are always linear on a small enough domain, so multiple simple linear models

can be concatenated into one more complicated model.

● Because variables can be transformed to make relationships linear.
○ If your data suffer from non-linearity, transform the independent variables.
○ If your data suffer from heteroskedasticity, transform the dependent variable.



Linear regression requires that the relationship between x and y be linear.
What if the relationship is not linear? We can transform the data!

How?
● Log transformation
● Exponential transformation
● Polynomial (power) transformations (square root, square, cube, etc.)

What?
● We can transform the independent variable only.
● We can transform the dependent variable only.
● We can transform both the independent and dependent variables.

Data Transformations



Logarithms
● To exponentiate is to raise a number to a power. For example, 102 = 100.

● Calculating a logarithm is the inverse (opposite) of exponentiating:
○ A logarithm is an exponent that yields a number. 
○ E.g., the log (short for logarithm) of 100 is 2. 
○ To take logs requires a base, which we assumed to be 10 in this example.

● The function ex is special (because its derivative is itself).

● Taking logs base e is also special, and is called the natural log (written ln(x)). 
○ N.B. R (and most programming languages) default to computing ln(x) if no base is specified.



Data Transformations

slope

slope
intercept

● Transforming a non-linear (exponential) relationship into a linear one



An Example: Mammalian Brain Weights
Do mammals with heavier bodies have heavier (and hence, bigger) brains?



BodyWt vs. BrainWt



BrainWt vs. log(BodyWt)



log(BrainWt) vs. BodyWt



log(BrainWt) vs. log(BodyWt)



Residual Plot

This residual plot looks much better!



“Linear” Model

my_model <- lm(log(BrainWt) ~ log(BodyWt))

ggplot(data = brains, 
  mapping = aes(BodyWt, BrainWt)) +
  geom_point() +
  xlim(c(0, 100)) + ylim(c(0, 500)) +
  stat_function(fun = function(x) (exp(1) 
** my_model$coefficients[1] * x ** 
my_model$coefficients[2]))



BodyWt and BrainWt



log(BodyWt) and log(BrainWt)



Extras



Relationships
● Y = a + bX

○ Linear relationship: Y increases proportionally with X.

○ A unit increase in X is associated with an additive increase in Y by b units.

● Y = eX

○ Exponential relationship: Y increases “exponentially” with X.

○ A unit increase in X is associated with a factor of e increase in Y:

a multiplicative increase in Y by e units.

● Y = ln(X)
○ Logarithmic relationship: Y increases “logarithmically” with X.

○ A factor of e increase in X yields a unit increase in Y,

because ln(eX) = ln(e) + ln(X) = 1 + ln(X).



Transformations
● Y = a + bX

○ As X increases linearly, Y increases linearly.

○ A unit increase in X is associated with an additive increase in Y by b units.

● ln(Y) = a + bX, so that Y = e(a + bX)

○ As X increases linearly, Y increases exponentially.

○ A unit increase in X is associated with an additive increase in ln(Y) by b units.

○ In other words, a unit increase in X is associated with a factor of eb increase in Y.

● Y = a + b ln(X)
○ As X increases multiplicatively, Y increases linearly.

○ A factor of e increase in X is associated with an additive increase in Y by b units,

because ln(eX) = ln(e) + ln(X) = 1 + ln(X), so a + b ln(eX) - (a + b ln(X)) = b.



Transformations
● ln(Y) = a + b ln(X), so that Y = eaXb

○ As X increases multiplicatively, Y increases polynomially.

○ A factor of k increase in X is associated with a factor of kb increase in Y:

a multiplicative increase in Y by kb units, because ea(kX)b - eaXb = kb(eaXb) - eaXb.

○ If b = 3, then doubling X (i.e., a factor of 2 increase) leads to a factor of 8 increase in Y. 

○ If b = 2, then tripling X (i.e., a factor of 3 increase) leads to a factor of 9 increase in Y. 



Image Source

https://en.wikipedia.org/wiki/Logarithmic_scale


Exponentials & Logarithms, Graphically

ex ln(x)

ex is a growth rate: after x time, growth increases by ex ln(x) is the inverse of ex: to grow by x takes ln(x) time



Linear Function on a Semi-log Plot

Image Source

https://www.intmath.com/exponential-logarithmic-functions/7-graphs-log-semilog.php


Linear Function on a Semi-log Plot

Image Source

https://www.intmath.com/exponential-logarithmic-functions/7-graphs-log-semilog.php

