Regression in Practice




Regression in Practice

e Regression Statistics
e Regression Diagnostics
e Data Transformations



Regression Statistics:
How Good is a Fit?




lce Cream Sales vs. Temperature
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http://www.sweetspotintelligence.com/en/wp-content/uploads/sites/5/2014/05/image023.png

Linear Regression in R

> summary (lm(sales ~ temp))
Call:
Im(formula = sales ~ temp)
Residuals:
Min 10 Median 30 Max

-74.467 -17.359 3.085 23.180 42.040

Coefficients:

EstimatelStd. Error t value

Pr(>|t])

(Intercept) -122.988 54.761 -2.246 0.0513 .
temp 28.427 2.816 10.096 3.31le-06 **x*
Signif. codes: 0 ‘x**’ (0.001 ‘**’ 0.01 *" 0.05 ‘.’

Residual standard error: 35.07 on 9 degrees of freedom
Adjusted R-squared:
3.306e-06

Multiple R-squared: 0.9189,
F-statistic: 101.9 on 1 and 9 DF,

p-value:

0.

1 \ 14

0.9098

Interpreting the standard error:
95% of the observations should
fall within +/- 1.96 standard
deviations of the regression
line, which for regression,
defines a prediction interval

T-test
e Null hypothesis: The value
of the coefficient is zero
e t-value: coefficient
estimate divided by the SE
e Pr(>|t])isap-value



Linear Regression in R

> summary(lm(sales ~ temp))
Call:
Im(formula = sales ~ temp)
Residuals:
Min 10 Median 30 Max

-74.467 -17.359 3.085 23.180 42.040

Coefficients:

Estimate Std. Error t value Pr(>]|t])
(Intercept) -122.988 54.761 -2.246 0.0513
temp 28.427 2.816 10.096 3.31le-06 **x*

Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 *" 0.05 '.” 0.1

\

Residual standard error: 35.07 on 9 degrees of freedom
Multiple R-squared: 0.9189, Adjusted R-squared: 0.9098
F-statistic: 101.9 on 1 and 9 DF, p-value: 3.306e-06
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Goodness of fit measures

Residual standard error
R? and adjusted R?
F statistic



Anatomy of Regression Errors

Anatomy of Regression Errors
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https://www.hackerearth.com/blog/wp-content/uploads/2016/12/anat.png

R?: Coefficient of Determination

e R?>=ESS/TSS

Interpretations:
o The proportion of the variance in the dependent variable that the model explains.
o The proportion of the variance in the dependent variable that independent variable predicts.

e Higher values of R? are preferred to lower values.
o Caveat: Adding additional independent variables to the model almost always increases R>.
Adjusted R? adjusts for this increase by penalizing model complexity.

e R’isso called because it is mathematically equivalent to the square of the

correlation coefficient, r.
o Like r, R? is valid only for linear models.



Proof that R* = correlation coefficient squared

Straightforward algebra!



https://statproofbook.github.io/P/slr-rsq#:~:text=Proof%3A%20Relationship%20between%20coefficient%20of,coefficient%20in%20simple%20linear%20regression&text=and%20consider%20estimation%20using%20ordinary,2%3Dr2xy.

Standard Error of the Residuals

e A residualis a difference between a fitted value and an observed value.

e The residual error (RSS) is the sum of the squared residuals.
o Intuitively, RSS is the error that the model does not explain.

e Itis a measure of how far the data are from the regression line (i.e., the
model), on average, expressed in the units of the dependent variable.

e The residual standard error is roughly the square root of the average

residual error (RSS / n).
o  Technically, it’s not \/(RSS / n), it’s \/(RSS / (n - 2)); it’s adjusted by degrees of freedom.



F Statistic

e The F statistic is the ratio of the error explained by the model to the
residual error: ESS / RSS (adjusted by degrees of freedom).

e The F statistic is used to test the predictive power of the independent
variable. In particular, does a non-zero coefficient improve the model?

e The F statistic extends naturally to multiple regression, where it is used to
test the predictive power of all independent variables, to see how unlikely
it is that all regression coefficients equal zero.

e Prob(F) is the probability that the null hypothesis is true: i.e., that all the
regression coefficients are zero.



Violations are not always easy to detect!

Assume a nonlinear relationship:
o X <- rnorm(25, 10, 2)
o e <- rnorm(25, 0, 1)
o y <- x ** 2 + e

Build a linear model:

Coefficients:

Estimate Std. Error t value Pr(Gltl)
(Intercept) -99.4095 3.9529 -25.15 <2e-16 ***
X 20.3762 0.3833 53.16 <2e-16 ***

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 °

0.1 °¢

Residual standard error: 3.792 on 23 degrees of freedom

Multiple R-squared: 0.9919, Adjusted R-squared:

0.9916

F-statistic: 2826 on 1 and 23 DF, p-value: < 2.2e-16

R tells us the results are statistically

significant, but a linear model is incorrect!
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Regression Diagnhostics




Checking Linearity

e Always begin an analysis with EDA

e Plot dependent vs. independent variables
o Is alinear relationship plausible?
o Are there outliers?

e Example: a nonlinear relationship
o x <= rnorm(z25, 10, 10)
o e <- rnorm(25, 0, 1)
o y <- x ** 2 + e

e And alinear model
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Residual Plots

e Aresidual is the difference between a fitted and an observed value.

e A plot of residuals vs. fitted values should look like a formless cloud.

e If a model accurately captures the structure in the data, then all that should
remain after the model is through making its predictions is random noise!
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Scatter and Residual Plots of Old Faithful

Eruptions
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The scatter plot shows two clusters, one with low
eruptions and low waiting time, and another with
high eruptions and high waiting time
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The scatter plot is not a formless cloud
There are diagonal stripes, suggesting a nonlinear
pattern in the data
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A Residual Plot for Ice Cream Sales

e This residual plot is a formless cloud. ¢
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o
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e Thus, a linear model seems suitable.
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> fit <- Im(sales ~ temperature)
> plot(residuals(fit) ~ fitted(fit), -
ylab = "Residuals", xlab = "Fitted 8 : : — 1

Values") + abline(a = 0, b = 0) 200 300 400 %0 o0
Fitted Values (Ilce Cream Sales)
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If there is non-randomness in your residuals, then your model is not explaining all that it can.



Outliers can gravely impact correlation

> cor (lineSx, lineSy) > cor (outlierS$Sx, outlierSy)
[1] 1 [1] O



Outliers can gravely impact regression

> line model <- 1lm(lineSy ~ lines$x)) > outlier model <- Im(outlierSy ~ outliers$x))
> plot (line model) > plot (outlier model)
> abline(line model, col = “red”) > abline (outlier model, col = “red”)




Their impact can be seen in residual plots

> plot (residuals (line model)
fitted(line model))
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How to handle outliers

e First, try to determine whether their removal can be justified.
o Was a clerical error made in entering the data? Correct any obvious mistakes.
o Check whether they might result from a failure to abide by the correct experimental procedure.
o  Look for any other possible explanations.

e If there are no convincing justifications for their removal, conduct analyses with and
without the outliers, and report all results. Hopefully, their impact is minor.



Standardized Residuals

e Astandardized residual is a residual divided by the standard deviation of the residuals.
e A plot of standardized residuals vs. fitted values should (also) look like a formless cloud.
e Standardizing residuals can be useful for identifying outliers.

In case it isn’t obvious,
these plots are NOT
formless clouds!
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Image Source


http://docs.statwing.com/interpreting-residual-plots-to-improve-your-regression/

Summary

In a well-behaved plot of residuals vs. fitted values:
e The residuals bounce around the x-axis randomly; they don’t smile or frown.
e No residuals stand out from the others, so there are no obvious outliers.
e They form a band around the 0 line; they don’t funnel in or out.

Aside: Why plot residuals vs. fitted values, and not observations?
e Because residuals and fitted values are uncorrelated by construction.
e Residuals and observations may be correlated—they both depend on
observations—which would make such plots harder to interpret.



Additional Residual Plots

e Plot residuals vs. independent variables

o Check for conditional expectation of 0
o Check for constant conditional variance (homoskedacity)



Assumption: Errors are Homoskedastic

e Homoskedasticity means that the variance of the error term,

conditional on X, is constant.
o Var[e | X=x] =07

e In words, the errors should not funnel or fan, as we move along the x-axis.
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Homoscedasticity U Heteroscedasticity 0 Image Source


https://statistics.laerd.com/statistical-guides/img/pearson-10.png

What if Errors are Heteroskedastic?

e We can to adjust the way we calculate the standard error of our

regression estimates if errors are heteroskedastic.
o Doing this in base R is quite hard, but someone made an open-source function to take
care of this for us; the function can be found here.

e When we build a linear model, we will store it first.
0 mod <- Im(y ~ x)

e Then, we can use the summary. 1m function in the library above.
o summary.lm(mod, robust = TRUE) will make a correction in the calculation for
standard error of the regression estimates when errors are heteroskedastic.


https://economictheoryblog.com/2016/08/08/robust-standard-errors-in-r/

Data Transformations




Why are linear models so popular?

e Because linear models are simple!
o Perhaps the simplest non-trivial relationship imaginable.

e Because true relationships are often close to linear in the domain of interest.
o They are always linear on a small enough domain, so multiple simple linear models
can be concatenated into one more complicated model.

e Because variables can be transformed to make relationships linear.
o If your data suffer from non-linearity, transform the independent variables.
o If your data suffer from heteroskedasticity, transform the dependent variable.



Data Transformations

Linear regression requires that the relationship between x and y be linear.
What if the relationship is not linear? We can transform the data!

How?
® Log transformation
e Exponential transformation
e Polynomial (power) transformations (square root, square, cube, etc.)

What?

e We can transform the independent variable only.
® We can transform the dependent variable only.
® \We can transform both the independent and dependent variables.



Logarithms

e To exponentiate is to raise a number to a power. For example, 10? = 100.

e Calculating a logarithm is the inverse (opposite) of exponentiating:
o Alogarithm is an exponent that yields a number.
o E.g., the log (short for logarithm) of 100 is 2.
o To take logs requires a base, which we assumed to be 10 in this example.

e The function e~ is special (because its derivative is itself).

e Taking logs base e is also special, and is called the natural log (written In(x)).
o N.B. R (and most programming languages) default to computing In(x) if no base is specified.



Data Transformations

e Transforming a non-linear (exponential) relationship into a linear one

y=1x y = cxr™
og) = o N

ol e+ gt

slope = log(c) + nlog(z)

intercept \

slope



An Example: Mammalian Brain Weights

Do mammals with heavier bodies have heavier (and hence, bigger) brains?

> brains

X BrainWt  BodyWt
i Arctic fox  44.500 3.385
2 Owl monkey  15.499 0.480
3 Beaver 8.100 1.350
4 Cow 423.012 464.983
5 Gray wolf 119.498 36.328
6 Goat 114.996 27.660
7 Roe deer 98.199 14.831
8 Guinea pig 5.500 1.040
9 Vervet 57.998 4.190
10 Chinchilla 6.400 0.425
11 Ground squirrel 4.000 0.101
12 Arctic ground_squirrel 5.700 0.920
13 African giant_pouched_rat ©0.000 1.000



BrainWt

BodyWt vs. BrainWt
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BrainWt vs. log (BodyWt)
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log (BrainWt) vs. BodyWt

log(BrainWt)
>

0 2000 4000 6000
BodyWt



log (BrainWt) vs. 1log (BodyWt)
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Residual Plot
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This residual plot looks much better!
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“Linear” Model

my model <- 1lm(log(BrainWt) ~ log(BodyWt))

ggplot (data = brains,
mapping = aes (BodyWt, BrainWt)) +
geom point () +
x1lim(c (0, 100)) + ylim(c(0, 500)) +
stat function (fun = function(x) (exp(1l)
** my modelScoefficients[l] * x **
my modelScoefficients([2]))
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BodyWt and BrainWt
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Relationships

o Y=a+bX
o Linear relationship: Y increases proportionally with X.

o Aunitincrease in X is associated with an additive increase in Y by b units.

o Y=¢X
o Exponential relationship: Y increases “exponentially” with X.
o Aunitincrease in X is associated with a factor of e increase in Y:

a multiplicative increase in Y by e units.

e Y=In(X)
o Logarithmic relationship: Y increases “logarithmically” with X.
o A factor of e increase in X yields a unit increase in Y,

because In(eX) = In(e) + In(X) = 1 + In(X).



Transformations

o Y=a+bX

o As Xincreases linearly, Y increases linearly.
o Aunitincrease in X is associated with an additive increase in Y by b units.

e In(Y)=a+bX, sothat Y =el@*X
o As Xincreases linearly, Y increases exponentially.
o Aunitincrease in X is associated with an additive increase in In(Y) by b units.
o In other words, a unit increase in X is associated with a factor of e” increase in Y.

e Y=a+b In(X)
o As Xincreases multiplicatively, Y increases linearly.
o Afactor of eincrease in X is associated with an additive increase in Y by b units,
because In(eX) =In(e) + In(X) =1 + In(X), soa + b In(eX) - (a + b In(X)) = b.



Transformations

e In(Y)=a+bIn(X), sothat Y=e%’
o As Xincreases multiplicatively, Y increases polynomially.
o A factor of k increase in X is associated with a factor of k” increase in Y:
a multiplicative increase in Y by k? units, because e?(kX)? - e?X? = kP(e?X®) - eX®.
o If b=3, then doubling X (i.e., a factor of 2 increase) leads to a factor of 8 increase in Y.
o Ifb=2,then tripling X (i.e., a factor of 3 increase) leads to a factor of 9 increase in Y.
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https://en.wikipedia.org/wiki/Logarithmic_scale

Exponentials & Logarithms, Graphically
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e* is a growth rate: after x time, growth increases by e* In(x) is the inverse of e*: to grow by x takes In(x) time



Linear Function on a Semi-log Plot
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https://www.intmath.com/exponential-logarithmic-functions/7-graphs-log-semilog.php

Linear Function on a Semi-log Plot
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https://www.intmath.com/exponential-logarithmic-functions/7-graphs-log-semilog.php

