
Simple Linear Regression



Ice Cream Sales vs. Temperature

Image source 

● If you were asked to describe the 
pattern between ice cream sales 
and temperature, you might say 
“ice cream sales seem to increase 
as temperature increases.”

● Temperature is called the independent 
variable, or the regressor, and Sales, 
the dependent variable, or the regressand.

● The independent variable is also known as the 
explanatory, predictor, or input variable, and 
the dependent variable, the response, or 
output variable.
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Parameters that Define Relationships
● Direction

○ Positive (direct)
○ Negative (indirect)

● Form
○ Linear
○ Non-linear

● Strength (weak, strong, moderate)

● Caution: Outliers



Simple Linear Regression

● Linear Regression is the study of 
linear, additive relationships 
between variables

● With simple linear regression, we 
fit a line to data, thereby 
describing the linear relationship 
between exactly two variables.



The Formal Problem Statement
● Find the line that “best” fits the data

● More precisely: given a set of (x, y) 
pairs, find a line such that the squared 
distance between each of the points 
and the line is minimized.

● This distance is called the residual.
So the formally, the regression 
problem is to minimize the sum of the 
squared residuals.



Fitting the “best” line
● The errors would be much larger if 

we fit this line to our data
● This line minimizes the sum of the 

squared residuals



The Regression Equation

The regression equation takes the 
following form: y = a + bx
● y is ice cream sales in dollars 
● a is the y intercept of the line 

(the values of y when x is zero)
● b is the slope of the line
● x is temperature in celsius 

y = a + bx



Linear Regression in R
● The regression equation for Ice Cream Sales 

versus Temperature is:

Sales = -122.99 + 28.43 (Temperature)

● b = 28.43 is the slope. For a one degree increase 
in temperature, sales are predicted to increase 
by 28.43 dollars.

● a = -122.99 is the y intercept. This value has no 
particular meaning; it definitely does not mean 
that when temperature is zero, sales are 
predicted to be -122.99 dollars!

> attach(ice_cream)
> lm(sales ~ temp) 

Call:
lm(formula = sales ~ temp)

Coefficients:
   (Intercept)           temp  
       -122.99          28.43  



Interpreting the Regression Line

In dollars: y = a + bx

● The intercept a = -122.99        
● The slope is b = 28.43

Each point on the regression line 
is the result of multiplying 
temperature by b and adding a

Caution: It is dangerous to make predictions 
outside the range of measured x values, because 
we don’t know anything about the relationship 
between x and y outside this region.
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The Solution 
● We want to minimize a function, so we use calculus to solve this problem.

○ Set the partial derivatives of this function equal to zero, and solve.

● After doing so, the solution to the problem is: 
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The Solution 
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○ So: if we regress on the z-scores of the data (instead of the data values themselves),
so that s
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 = 1, the slope of the regression line equals the correlation of X and Y! 



The Slope of the Regression Line
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Interpreting the Regression Line
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○ The slope differs from zero the more Y covaries with X.
○ The slope tends towards zero the more X alone varies.
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○ The intercept defines a line with slope b
1
 that passes thru the point (x, y).

○ When x equals zero, the intercept is the mean of the dependent variable, y.
○ If x never equals zero, then the intercept has no intrinsic meaning.
○ Caution: It is dangerous to make predictions outside the range of measured x values, because 

we don’t know anything about the relationship between x and y outside this region.



Interpreting the Regression Line

In dollars: y = a + bx

● The intercept a = -159.47        
● The slope is b = 30.9

Each point on the regression 
line is the result of multiplying 
temperature by b and adding a



Interpreting the Regression Line (cont’d)

In standard units: y = rx

● The intercept is 0
● The slope is r

Each point on the regression 
line is the result of multiplying 
temperature in standard units 
by r (and adding 0)



BTW, the sum of the residuals is zero ...

But the sum of the residuals of any line through (x, y) is zero!



A Brief History of Regression



Francis Galton

Image source

https://goo.gl/images/zZDluo


Heights of Fathers and their Sons

● The scatter plot to the right depicts 
data collected by Pearson and his 
colleagues in the early 1900’s

● It consists of 1078 pairs of heights of 
father and their sons 

● The plot is shaped like an American 
football, with a dense center and 
fewer points around the perimeter 



Fitting a Regression Line in R

plot(Father, Son, col = "red")
fit <- lm(Son ~ Father)
abline(fit, col = "blue")

The blue line follows the angle of 
the cloud of points, and is called 
the regression line.

Coefficients:
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 33.89280    1.83289   18.49   <2e-16 ***
Father       0.51401    0.02706   19.00   <2e-16 ***



The Regression Line, in Standard Units
● This scatter plot depicts the data 

in standard units.

● The black line has a slope of 1:
○ A one unit increase in father’s 

height leads to corresponding one 
unit increase in son’s.

● The slope of the regression line is 
less than 1. In fact, it is r ≈ 0.5:
○ A one unit increase in father’s 

height leads to corresponding 
one-half unit increase in son’s.



Histogram of the Differences

The bulk (95%) of the data lie 

between -4.4 and 6.4 inches. 

 > summary(heights)
     Father           Son             Diff         
 Min.   :59.00   Min.   :58.50   Min.   :-9.0000   
 1st Qu.:65.80   1st Qu.:66.90   1st Qu.:-0.8000   
 Median :67.80   Median :68.60   Median : 1.0000   
 Mean   :67.69   Mean   :68.68   Mean   : 0.9974   
 3rd Qu.:69.60   3rd Qu.:70.50   3rd Qu.: 2.7750   
 Max.   :75.40   Max.   :78.40   Max.   :11.2000  

Sons are about an inch taller than 
their fathers, on average.



Histograms of their Heights

● The histograms of the fathers’ and 
sons’ heights are both bell-shaped.

● The histograms mostly overlap.

● Again, sons are about an inch taller 
than their fathers, on average.

> summary(heights)
     Father           Son        
 Min.   :59.00   Min.   :58.50   
 1st Qu.:65.80   1st Qu.:66.90   
 Median :67.80   Median :68.60   
 Mean   :67.69   Mean   :68.68   
 3rd Qu.:69.60   3rd Qu.:70.50   
 Max.   :75.40   Max.   :78.40  



Correlation in their Heights

The correlation in their heights is 
exactly what leads to the American 
football (i.e., ellipsoidal) shape

> pearson <- read.csv("pearson.csv")
> cor(pearson$Son, pearson$Father)
[1] 0.5011627



The Regression Effect 

● We might expect the sons of tall 
fathers to be tall as well.

● This histogram shows the heights 
of sons of 72 inch fathers. 

● Most (68%) of these sons are less 
than 72 inches tall!



The Regression Effect (cont’d) 
● This is surprising!

○ Sons are an inch taller than their fathers, on average.
○ But sons of tall fathers are more than an inch shorter than their fathers, 

on average!

> tall_fathers <- heights %>% filter(Father >= 72)
> mean_tall_fathers <- tall %>% summarize(father = 
mean(Father), son = mean(Son), diff = mean(Diff))
> mean_tall_fathers
   father     son     diff
1 72.8178 71.4575 -1.36027 



History of the Regression Effect
● The regression effect was first documented by the statistician Francis Galton, 

who had thought (hoped, even) that tall fathers would have tall sons.

● These data show that tall fathers’ sons were not quite as tall.

● Galton, who is sometimes called the father of eugenics, called this effect 
“regression to mediocrity”. Today, this is called the regression effect.

● Galton also noticed that short fathers had sons who were somewhat taller 
than their generation on average. 

● Individuals who are below (or above) average after a first measurement tend 
to move towards the mean after a second, and vice versa. Why?



The Regression Effect, Explained
● Imagine pre-test and a post-test measurements for a set of individuals who 

receive a null treatment (i.e., a placebo).
● Some individuals will test below the mean, and others will test above.
● Assuming perfect measurements (no measurement error), those who test 

below (or above) in the pre-test will do so for one of two reasons. Either: 
their measurements are truly below (or above) the mean, or randomness.

● In the post-test, if they are truly below (or above) the mean, they will likely 
measure that way again.

● But if their pre-test measurements were due to random fluctuations, they 
will move in the direction of the mean!

● So, conditioned on measuring below (or above) the mean in the pre-test, 
measurements will be closer to the mean in the post-test!



Extras



Interpreting the Regression Line

In inches: y = a + bx

● The intercept a = 33.89
● The slope is b = 0.514

Each point on the regression 
line is the result of multiplying 
a father’s height in inches by b 
and adding a



Interpreting the Regression Line (cont’d)

In standard units: y = rx

● The intercept is 0
● The slope is r

Each point on the regression 
line is the result of 
multiplying a father’s height 
in standard units by r


