
Plan for the week

● M: Classical Statistics
○ Confidence Intervals

● W: Classical Statistics (cont’d)
○ Hypothesis Testing

● F: Guest Speaker: Kate Miller
○ Attendance will be taken
○ But regardless, you definitely don’t want to miss this lecture!



Confidence Intervals



Point Estimate
Given a statistical model of a population, a point estimate is a 
single value used to estimate a model parameter.

Examples:
● A sample mean is often used to estimate the mean (i.e., the “true” mean) of 

a normally distributed random variable.
● Likewise, a sample proportion is often used to estimate the probability of 

success of a binomially distributed random variable.

But even the very best, data-driven point estimate is often wrong!



● Goal is to find not just a single point estimate, but an interval estimate,
which is a plausible range of values for the parameter of interest

● As such, an interval estimate is delimited by an upper and lower bound

● Further, it quantifies the uncertainty in the estimate, via a confidence level, α
○ α is usually small
○ α = 0.05 implies a 95% confidence interval
○ α = 0.10 implies a 90% confidence interval

● Pr[z
lo

 ≤ Z ≤ z
hi

] = 1 - α

Interval Estimate



A confidence interval is a pair θ
lo

 ≤ θ
hi

 such that Pr[θ
lo

 ≤ θ ≤ θ
hi

] ≥ 1 - α,
where the randomness stems from the sampling process and impacts θ

lo
 and θ

hi

A confidence interval is a NOT pair θ
lo

 ≤ θ
hi

 such that Prθ[θlo
 ≤ θ ≤ θ

hi
] ≥ 1 - α,

because θ is NOT a random quantity (in classical statistics, anyway!)

Aside: A credible interval IS a pair θ
lo

 ≤ θ
hi

 such that Prθ[θlo
 ≤ θ ≤ θ

hi
] ≥ 1 - α,

because θ IS a random quantity in Bayesian statistics

Potential Pitfall



The Mighty Central Limit Theorem
● The CLT tells us how a sample mean, say Y, is distributed:

○ It is normally distributed with mean 𝝁 and standard error SE = σ/√n, 
where 𝝁 and σ are the population mean and standard deviation



The Mighty Central Limit Theorem
● The CLT tells us how a sample mean, say Y, is distributed:

○ It is normally distributed with mean 𝝁 and standard error SE = σ/√n, 
where 𝝁 and σ are the population mean and standard deviation

● Z = (Y - 𝝁) / SE is thus distributed according to the standard normal:
Pr[z

lo
 ≤ Z ≤ z

hi
] = 1 - α



The Mighty Central Limit Theorem
● The CLT tells us how a sample mean, say Y, is distributed:

○ It is normally distributed with mean 𝝁 and standard error SE = σ/√n,
where 𝝁 and σ are the population mean and standard deviation

● Z = (Y - 𝝁) / SE is thus distributed according to the standard normal:
Pr[z

lo
 ≤ Z ≤ z

hi
] = 1 - α

● 1 - α =

Pr[z
lo

 ≤ Z ≤ z
hi

] =                     This is what we know: a confidence interval around 

Z

Pr[z
lo

 ≤ Y - 𝝁 / SE ≤ z
hi

] =

Pr[𝝁 + z
lo

SE ≤ Y ≤ 𝝁 + z
hi

SE] = 

Pr[Y + z
lo

SE ≤ 𝝁 ≤ Y + z
hi

SE]  This is what we want: a confidence interval around 𝝁



Critical Values
● Pr[Y + z

lo
SE ≤ 𝝁 ≤ Y + z

hi
SE] = 1 - α

● The choice of α dictates values for z
lo

 and z
hi

: i.e., the critical values: 
e.g., α = 0.5 implies z

lo
 = -1.96 and z

hi
 = 1.96

Image Sources

http://www.statisticshowto.com/probability-and-statistics/normal-distributions/


Standard Normal Table

Image Source

In the olden days (back when I was a 
student), we used the standard normal 
table to answer queries.

Find z
lo

 and z
hi

 s.t. Pr[z
lo

 ≤ Z ≤ z
hi

] = 1 - α
● If 1 - α = 90%, then |zα/2

| = z
1-α/2

 = 1.645
● If 1 - α = 95%, then |zα/2

| = z
1-α/2

 = 1.96
● If 1 - α = 98%, then |zα/2

| = z
1-α/2

 = 2.33
● If 1 - α = 99%, then |zα/2

| = z
1-α/2

 = 2.58

z
lo

 = -zα/2 
& z

hi
 = z

1-α/2 

E.g., Pr[-1.96 ≤ Z ≤ 1.96] = .95

https://www.boundless.com/statistics/textbooks/boundless-statistics-textbook/continuous-random-variables-10/the-normal-curve-39/finding-the-area-under-the-normal-curve-193-2641/


Standard Normal Table

Image Source

These days, we use R:
● qnorm(0.975)= 1.959964

Find z
lo

 and z
hi

 s.t. Pr[z
lo

 ≤ Z ≤ z
hi

] = 1 - α
● If 1 - α = 90%, then |zα/2

| = z
1-α/2

 = 1.645
● If 1 - α = 95%, then |zα/2

| = z
1-α/2

 = 1.96
● If 1 - α = 98%, then |zα/2

| = z
1-α/2

 = 2.33
● If 1 - α = 99%, then |zα/2

| = z
1-α/2

 = 2.58

z
lo

 = -zα/2 
& z

hi
 = z

1-α/2

E.g., Pr[-1.96 ≤ Z ≤ 1.96] = .95

https://financetrain.com/confidence-interval-population-mean-known-population-variance/


Let’s say you are running for mayor!*
● You hire a polling agency to determine if you are likely to win or not.

● After sampling 100 likely voters, the agency reports that 55 of those 100 
support you. Woo hoo! You are predicted to be the winner!

● But wait! There are more than 100 likely voters!

● How does 0.55, the sample mean, relate to the population mean?
○ The polling agency also reports a 95% confidence interval around the number 0.55:

e.g., (0.45, 0.65). If this interval includes values below 0.5, your win is less certain.
■ Polling agencies tend to report margins of error (MoE = 0.1).
■ MoE and confidence intervals are related.

○ But wait…how did the polling agency come up with this confidence interval/MoE?

*Sumbul Siddiqui ’10 is now in her third term as the mayor of the City of Cambridge, Massachusetts. 
  Additionally, two Brown alumni were recently elected mayor in Greece, in Athens and in Thessaloniki.



● Let X be the number of people who support you in a poll, and let p
hat

 = X/n.

● By the central limit theorem, for large enough n, p
hat

 is approximately 
normal, with mean 𝝁 and standard deviation SE.

● It follows that Pr[p
hat

 + z
lo

SE ≤ 𝝁 ≤ p
hat

 + z
hi

SE] = 1 - α

● Choose α = 0.05: Pr[p
hat

 - 1.96SE ≤ 𝝁 ≤ p
hat

 + 1.96SE] = 0.95

● Sounds good, but what is the standard error of p
hat

?

Building a Confidence Interval



● As SE = σ/√n, this begs the question: what is the standard deviation of X?

● Well, how is it distributed? Easy: X is binomially distributed.
○ Mean = np
○ Variance = np(1-p)

● The mean of p
hat

 is p.
○ 𝝁 = E[p

hat
] = E[X/n] = np/n = p

● The variance of p
hat

 is p(1 - p)/n:
○ Var[p

hat
] = Var[X/n] = 1/n2 Var[X] = 1/n2 (np)(1 - p) = p(1 - p)/n

○ SE = √p(1 - p)/n

The mean and variance of X



● Let X be the number of people who support you in a poll, and let p
hat

 = X/n.

● By the central limit theorem, for large enough n, p
hat

 is approximately 
normal, with mean 𝝁 and standard deviation SE.

● It follows that Pr[p
hat

 + z
lo

SE ≤ 𝝁 ≤ p
hat

 + z
hi

SE] = 1 - α

● Choose α = 0.05: Pr[p
hat

 - 1.96SE ≤ 𝝁 ≤ p
hat

 + 1.96SE] = 0.95

● Sounds good, but what is the standard error of p
hat

?

● Now we know σ: SE = √p(1 - p)/n

● Or do we?

Building a Confidence Interval (cont’d)



New problem: We don’t know p!

● We estimate p by p
hat

. 
○ N.B. This is cheating, but only negligibly so.

Hence, we build our 95% confidence interval as follows: 

● Let σ
hat

 = √p
hat

(1 - p
hat

)/n = √(.55)(.45)/100 = 0.05

● Pr[p
hat

 + z
lo
σ

hat
 ≤ 𝝁 ≤ p

hat
 + z

hi
σ

hat
] = .95

○ Lower Bound: 0.55 + (-1.96)(0.05) = .45

○ Upper Bound: 0.55 + (1.96)(0.05) = .65

● The value (1.96)(0.05) ≈ 0.1 is called the margin of error.

Building a Confidence Interval (cont’d)



John Snow’s Grand Experiment,
Revisited



Data collected by John Snow

Supply Area # of Houses Cholera Deaths Deaths/10,000 Houses

S&V 40,046 1,263 315

Lambeth 26,107 98 37

Rest of London 256,423 1,422 59



● Choose α = 0.05: Pr[p
hat

 - 1.96σ
hat

 ≤ 𝝁 ≤ p
hat

 + 1.96σ
hat

] = 0.95

● We need to calculate p
hat 

and σ
hat

 to find a confidence interval

● For S&V:
○ P

hat
 = 1263/40046 ≈ 0.0315

○ Var[p
hat

] = (0.0315)(1 - 0.0315) / 40046 = 7.62 x 10e-7
○ The standard error is the square root of the variance: SE[p

hat
] = √7.62 x 10e-7 = 0.00087

● So the confidence interval at the 95% level is: 
○ [0.0315 - (1.96)(0.00087), 0.0315 + (1.96)(0.00087)] = [0.03, 0.033]

Let’s compute confidence intervals



● Choose α = 0.05: Pr[p
hat

 - 1.96σ
hat

 ≤ 𝝁 ≤ p
hat

 + 1.96σ
hat

] = 0.95

● We need to calculate p
hat 

and σ
hat

 to find a confidence interval

● For Lambeth:
○ P

hat
 = 98/26107 ≈ 0.00375

○ Var[p
hat

] = (0.00375)(1 - 0.00375) / 26107 = 1.43 x 10e-7
○ The standard error is the square root of the variance: SE[p

hat
] = √1.43 x 10e-7 = 0.000378

● So the confidence interval at the 95% level is: 
○ [0.00375 - (1.96)(0.000378), 0.00375 + (1.96)(0.000378)] = [0.003, 0.0044]

Let’s compute confidence intervals



● Choose α = 0.05: Pr[p
hat

 - 1.96σ
hat

 ≤ 𝝁 ≤ p
hat

 + 1.96σ
hat

] = 0.95

● We need to calculate p
hat 

and σ
hat

 to find a confidence interval

● For Lambeth:
○ P

hat
 = 1422/256423 ≈ 0.0055

○ Var[p
hat

] = (0.0055)(1 - 0.0055) / 256423  = 2.133 x 10e-8
○ The standard error is the square root of the variance: SE[p

hat
] = √2.133 x 10e-8 = 0.00014

● So the confidence interval at the 95% level is:
○ [0.0055 - (1.96)(0.00014), 0.0055 + (1.96)(0.00014)] = [0.005, 0.006]

Let’s compute confidence intervals



# data
area <- c("S&V", "Lambeth", "London")
houses <- c(40046, 26107, 256423)  
deaths <- c(1263, 98, 1422) 
cholera <- data.frame(area, houses, deaths)

> cholera
     area houses deaths
1     S&V  40046   1263
2 Lambeth  26107     98
3  London 256423   1422

Let’s code this up!



# statistics
cholera$phat <- deaths / houses
cholera$variance <- (cholera$phat) * (1 - cholera$phat) / cholera$houses
cholera$se <- sqrt(cholera$variance)

> cholera
     area houses deaths        phat     variance           se
1     S&V  40046   1263 0.031538730 7.627238e-07 0.0008733406
2 Lambeth  26107     98 0.003753783 1.432448e-07 0.0003784769
3  London 256423   1422 0.005545524 2.150654e-08 0.0001466511

Let’s code this up!



> qnorm(0.01)
[1] -2.326348

> qnorm(0.025)
[1] -1.959964

> qnorm(0.05)
[1] -1.644854

> qnorm(0.95)
[1] 1.644854

> qnorm(0.975)
[1] 1.959964

> qnorm(0.99)
[1] 2.326348

qnorm

Image Sources

http://www.statisticshowto.com/probability-and-statistics/normal-distributions/


# confidence intervals
alpha = 0.05
quantile <- -qnorm(alpha / 2)
cholera$CI_lower <- cholera$phat - quantile * cholera$se
cholera$CI_upper <- cholera$phat + quantile * cholera$se

> quantile
[1] 1.959964

> cholera %>% select(area, phat, CI_lower:CI_upper)
     area        phat    CI_lower    CI_upper
1     S&V 0.031538730 0.029827014 0.033250447
2 Lambeth 0.003753783 0.003011981 0.004495584
3  London 0.005545524 0.005258094 0.005832955

Let’s code this up!



Some Histograms



Deriving Standard Error



● Let X
N
 represent the sample mean:

○ X
N
 = (X

1
 + … + X

n
)/n

● First, we need the variance of the sample mean:
○ X

i
 are normally distributed with variance σ2

○ Var[X
N
] = Var[(X

1
 + … + X

n
)/n] = (1/n2) Var[X

1
 + … + X

n
] = 

(1/n2) (Var[X
1
] + Var[X

2
] + … + Var[X

n
]) = (1/n2) (n) Var[X

1
] = σ2/n

● We now have a formula for the standard error of the sample mean:
○ SE[X

N
] = σ/√n

The Standard Error of the Sample Mean 



● Let P
hat

 represent the sample proportion:
○ P

hat
 = X/n, where X is a binomial random variable distributed according to (n, p)

● First, we need the variance of the sample proportion:
○ X ~ B(n, p)
○ Var[P

hat
] = Var[X/n] = (1/n2)(np)(1 - p) = p(1 - p)/n

● We now have a formula for the standard error of the sample proportion:
○ SE[P

hat
] = √p(1 - p)/n

The Standard Error of the Sample Proportion



● Let X
N
 - Y

M 
represent the difference between two sample means.

● X
N
 - Y

M
 = (X

1
 + … + X

n
)/n - (Y

1
 + … + Y

m
)/m

○ X
i
 and Y

i
 are normally distributed with variance σ

X
 and σ

Y
○ Var[X

N
 - Y

M
] = Var[X

N
] + Var[Y

M
] = σ

X
2/n + σ

Y
2/m

● We now have a formula for the standard error of the difference between 
two sample means:
○ SE[X

N
 - X

M
] = √(σ

X
2/n  + σ

Y
2/m)

Difference of Two Sample Means



● Let P
1
 represent one proportion, and P

2
 a second proportion. 

● P
1
 = X/n and P

2
 = Y/m

○ X ~ B(n, p
1
) and Y ~ B(m, p

2
)

○ Var[P
1
- P

2
] = Var[X/n] + Var[Y/m]  = p

1
(1 - p

1
)/n + p

2
(1 - p

2
)/m 

● We now have a formula for the standard error of the difference between 
two sample proportions:
○ SE[P

1
 - P

2
] = √(p

1
(1 - p

1
)/n + p

2
(1 - p

2
)/m)

Difference of Two Sample Proportions



Student t-Distribution



Building Confidence Intervals
● The only difference between building confidence intervals using the 

t-distribution and building them using the normal is: the critical values for 
the normal distribution are familiar numbers to most statisticians. Recall:
○ Find z

lo
 and z

hi
 s.t. P[z

lo
 ≤ Z ≤ z

hi
] = 1 - α%

■ If 1 - α = 90%, then |zα/2
| = z

1-α/2
 = 1.645

■ If 1 - α = 95%, then |zα/2
| = z

1-α/2
 = 1.96

■ If 1 - α = 98%, then |zα/2
| = z

1-α/2
 = 2.33

■ If 1 - α = 99%, then |zα/2
| = z

1-α/2
 = 2.58

○ z
lo

 = zα/2 
& z

hi
 = z

1-α/2 
are called critical values.

● For the t-distribution, we have to look up the critical values.
○ There is more uncertainty because their are fewer samples.
○ So fixing α, the magnitude of these values is higher.



An Example 
● Let’s say we polled 30 people to see who they thought would win the 2016 

presidency, and 60% of them said Clinton.

● We can build a 95% confidence interval as follows:
○ The estimate is 0.6.
○ The SE = sqrt{(.6)(.4)/30} = 0.09.
○ We look up the critical t-values:

■ qt(0.025, 29) = -2.05  and qt(0.975, 29) = 2.05
■ The number 29 is the degrees of freedom, which is the number of values that are free to vary

● The 95% CI is (0.6 - (2.05)(0.09), 0.6 + (2.05)(0.09)) = (0.42, 0.78)



An Example 
● Let’s say we polled 20 people to see who they thought would win the 2016 

presidency, and 60% of them said Clinton.

● We can build a 95% confidence interval as follows:
○ The estimate is 0.6.
○ The SE = sqrt{(.6)(.4)/20} = 0.11.
○ We look up the critical t-values:

■ qt(0.025, 19) = -2.09  and qt(0.975, 19) = 2.09
■ The number 19 is the degrees of freedom, which is the number of values that are free to vary

● The 95% CI is (0.6 - (2.09)(0.11), 0.6 + (2.09)(0.11)) = (0.37, 0.83)



An Example 
● If we poll 30 people, the 95% CI is (0.6 - (2.05)(0.09), 0.6 + (2.05)(0.09)) = (0.42, 0.78)

● If we poll 20 people, the 95% CI is (0.6 - (2.09)(0.11), 0.6 + (2.09)(0.11)) = (0.37, 0.83)

● If we poll 10 people, the 95% CI is (0.6 - (2.26)(0.155), 0.6 + (2.26)(0.155)) = (0.25, 0.95)

● Notice how the width of the confidence interval increases as the sample size decreases,
holding the significance level α constant.



Back to your run for mayor, using Student t
● The polling agency polled 100 people to see if they support you for mayor, 

and 55 people said they did.

● We can build a 95% confidence interval as follows:
○ The estimate is 0.55.
○ The SE = sqrt{(.55)(.45)/100} = 0.05.
○ We look up the critical t-values:

■ qt(0.025, 99) = -1.98  and qt(0.975, 99) = 1.98
■ The number 99 is the degrees of freedom, which is the number of values that are free to vary

● The 95% CI is (0.55 - (1.98)(0.05), 0.55 + (1.98)(0.05)) = (0.451, 0.649) 
● The 95% CI was (0.55 - (1.96)(0.05), 0.55 + (1.96)(0.05)) = (0.45, 0.65)



Extras



● Our methods make use of the central limit theorem. 
○ In the examples, we do not assume anything about how preferences are distributed. 
○ However, by the CLT, we know the sampling distribution is approximately normal. 
○ The surveys were large enough for the CLT to apply. However, the CLT may not have

applied if the sample size were smaller. (Rule of thumb:  CLT applies whenever n ≥ 30.)

● Very common mistake: a 95% confidence interval between 1 and 2 is often
interpreted as a 95% chance the parameter lies between 1 and 2. 
○ This is a misconception, because the true parameter isn’t random! It is a fixed value.
○ A 95% interval means that if we repeated the experiment 100 times, 95 of the resulting 

100 intervals would contain the true parameter.
○ These two interpretations are not the same. Be careful to avoid this potential pitfall!

Some words of warning! 


