Plan for the week

- M: Introduction to Probability
- W: Probability, cont'd
 - Random Variables
 - Mean & variance, revisited
 - Binomial, normal distributions
 - Law of large numbers
 - Central limit theorem
- F: No section this week!
 - Classical Statistics

Introduction to Probability

What is probability?

- Frequentists define the probability of an event as its long-term relative frequency
 - Probability is undefined for a single trial.
 - Nothing is uncertain. (Probabilities are averages.)
- Bayesians define probability as a degree of belief about an event occurring, or about a hypothesis
 - Probabilities reflect knowledge and experience
 - Certain beliefs are expressed using probabilities of 0 and 1
- Regardless of your philosophical stand, all definitions of probability rely on Kolmogorov's axioms

Set Theory Definitions

- A set is a collection of elements, e.g., {1, 2, 3, 4, five}
- A subset of a set A is a set B that contains 0 or more elements of A.
 If A = {1, 2, 3, 4, five}, then B = {1, 2, 3} is a subset of A.
- The cardinality of a set is the number of elements in the set.
 - \circ E.g., the cardinality of A is 5. This is written as |A| = 5.

Basic Definitions (grounded in set theory)

- An (random) experiment is the process of observing something uncertain.
 A coin flip, a roll of a die, today's weather, etc.
- An outcome is a result of a random experiment.
- The sample space, or universe, is the set of all possible outcomes, denoted Ω .

Toss a fair coin	Ω = {H, T}	
Toss two fair coins	$\Omega = \{HH, HT, TH, TT\}$	
Roll a fair die	$\Omega = \{1, 2, 3, 4, 5, 6\}$	
Roll a loaded die (25% chance of 1)	$\Omega = \{1, 2, 3, 4, 5, 6\}$	
Roll two dice	$\Omega = \{(1,1), (1,2), \dots, (1,6), (2,1)\}$,1), (2,2),, (2,6),, (6,1), (6,2),, (6,6)}

Event Probabilities

- An event is any subset of the universe (i.e., a set of outcomes).
- The probability of an event is its likelihood of occurring.
- How do you compute probabilities?
 - First, find the size of the event: i.e., number of outcomes the event comprises.
 - Then, divide by the size of the universe: i.e., the total number of outcomes.

Toss a fair coin	$\Omega = \{H, T\}$	{H} / {H, T} = 1/2
Toss two fair coins	Ω = {HH, HT, TH, TT}	{HH, HT, TH} / {HH, HT, TH, TT} = 3/4
Toss a fair die	$\Omega = \{1, 2, 3, 4, 5, 6\}$	{1} / {1, 2, 3, 4, 5, 6} = 1/6
Toss a loaded die (25% chance of 1)	$\Omega = \{1, 2, 3, 4, 5, 6\}$	p(1) = .25 , p({2, 3, 4, 5, 6}) = .75 p(2) = {2} / {2, 3, 4, 5, 6} (.75) = .15

Event Probabilities

- An event is any subset of the universe (i.e., a set of outcomes).
- The probability of an event is its likelihood of occurring.
- How do you compute probabilities?
 - First, find the size of the event: i.e., number of outcomes the event comprises.
 - Then, divide by the size of the universe: i.e., the total number of outcomes.

Toss a fair coin	$\Omega = \{H, T\}$	{H} / {H, T} = 1/2
Toss two fair coins	$\Omega = \{HH, HT, TH, TT\}$	{HH, HT, TH} / {HH, HT, TH, TT} = 3/4
Toss a fair die	$\Omega = \{1, 2, 3, 4, 5, 6\}$	{1} / {1, 2, 3, 4, 5, 6} = 1/6
Toss a loaded die (25% chance of 1)	Ω = {1a, 1b, 1c, 1d, 1e, 2a, 2b, 2c, 3a, 3b, 3c, 4a, 4b, 4c, 5a, 5b, 5c,	$p(1) = \{1a, 1b, 1c, 1d, 1e\} / \Omega = .25$ $p(2) = \{2a, 2b, 2c\} / \Omega = .15$

Fair Coin Tosses

- What is the probability of seeing a head when we flip a fair coin?
 - There are two outcomes in the universe, heads and tails ({H, T}).
 - The (sole) outcome we are interested in is heads.
 - Thus, the probability is ½.
- What is the probability of seeing a head when we flip two fair coins?
 - There are four outcomes in the universe: {HH, HT, TH, TT}.
 - The outcomes (plural!) we are interested in are HH, HT, and TH.
 - Thus, the probability is ¾.

Toss a fair coin, See heads	Ω = {H, T}	{H} / {H, T} = 1/2
Toss two fair coins See heads	$\Omega = \{HH, HT, TH, TT\}$	{HH, HT, TH} / {HH, HT, TH, TT} = 3/4

Rolling the dice

- What is the probability of seeing a 1 when you roll a fair die?
 - There are six outcomes in the universe: {1, 2, 3, 4, 5, 6}.
 - The outcome we are interested in is 1.
 - Thus, the probability is %.
- What is the probability of seeing a 2 when you roll a loaded die that favors 1?
 - There are six outcomes in the universe: {1, 2, 3, 4, 5, 6}.
 - The probability of seeing a 1 is .25. The probability of seeing something else is .75.
 - The outcome we are interested in is 2.
 - Thus, the probability is .15.

Toss a fair die	$\Omega = \{1, 2, 3, 4, 5, 6\}$	{1} / {1, 2, 3, 4, 5, 6} = 1/6
Toss a loaded die (25% chance of 1)	$\Omega = \{1, 2, 3, 4, 5, 6\}$	p(1) = .25, p({2, 3, 4, 5, 6}) = .75 {2} / {2, 3, 4, 5, 6} (.75) = .15

Rolling the dice

- What is the probability of seeing a 1 when you roll a fair die?
 - There are six outcomes in the universe: {1, 2, 3, 4, 5, 6}.
 - The outcome we are interested in is 1.
 - \circ $\,$ $\,$ Thus, the probability is ½.
- What is the probability of seeing a 2 when you roll a loaded die that favors 1?
 - There are 20 outcomes in the universe:
 {1a, 1b, 1c, 1d, 1e, 2a, 2b, 2c, 3a, 3b, 3c, 4a, 4b, 4c, 5a, 5b, 5c, 6a, 6b, 6c}.
 - The event we are interested in is 2, represented by {2a, 2b, 2c}.
 - Thus, the probability is $p(2) = |\{2a, 2b, 2c\}| / |\Omega| = .15$.

Toss a fair die	$\Omega = \{1, 2, 3, 4, 5, 6\}$	{1} / {1, 2, 3, 4, 5, 6} = 1/6
Toss a loaded die (25% chance of 1)	Ω = {1a, 1b, 1c, 1d, 1e, 2a, 2b, 2c, 3a, 3b, 3c, 4a, 4b, 4c, 5a, 5b, 5c,	p(1) = $ \{1a, 1b, 1c, 1d, 1e\} / \Omega = .25$ p(2) = $ \{2a, 2b, 2c\} / \Omega = .15$

ICA

- In the game of Monopoly, a player rolls two dice. The player then adds their rolls together, and moves that many spaces.
- There is a *Free Parking* space, and if a player lands on it, they get a payout of some amount of (Monopoly) money.
- It is your turn, and you are 8 spaces away from the *Free Parking* space.
- What is the probability you land on *Free Parking* on your next turn?

Enumerating the Sample Space

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

Finding the Event of Interest

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

Solution

- There are 36 outcomes in all.
- We can roll two dice that sum to 8 in five different ways.
 - The event of interest is {(6,2), (5,3), (4,4), (3,5), (2,6)}.
- Hence, the probability that you will land on *Free Parking* is 5/36!

Axioms and Laws of Probability

Kolmogorov's Axioms of Probability

- Probability is a branch of mathematics. As such, it is an axiomatic science.
- An axiom is a statement that is regarded as self-evidently true.
- In probability, there are 3 basic axioms:
 - Probabilities cannot be negative.
 - Probabilities cannot exceed 1.
 - Axioms 1 and 2 imply that all probabilities are bounded between 0 and 1, inclusive.
 - The probability of the union of two disjoint events, A and B, is the sum of their respective probabilities: i.e., P(A or B) = P(A) + P(B)
 - In particular, the sum of the probabilities of all outcomes is 1.
- We will check that our definition of probabilities satisfies these basic axioms: $P(A) = |A|/|\Omega|$.

Axiom 1

Probabilities cannot be negative:

- Recall how we calculate probabilities
 - In the monopoly example, we counted how many outcomes an event comprises, and then we divided that number by the size of the universe (i.e., the total number of outcomes).
- At worst, an event occurs 0 times (e.g., rolling a 7 on a six-sided die)!
- Since cardinalities are bounded below by 0, so too are probabilities.

Axiom 2

Probabilities cannot exceed 1:

- $P(\Omega) = |\Omega|/|\Omega| = 1.$
- The universe Ω includes all possible outcomes.
- The probability that an event outside the universe occurs is 0.
- Therefore, the probability that an event inside the universe occurs is 1!

Axiom 3

The probability of the union of two disjoint events, A and B, is the sum of their respective probabilities: i.e., P(A or B) = P(A) + P(B):

- $P(A \text{ or } B) = |A \cup B|/|\Omega|$
- $P(A) + P(B) = |A|/|\Omega| + |B|/|\Omega|$
- Must show: $|A \cup B|/|\Omega| = |A|/|\Omega| + |B|/|\Omega|$
- But $|A|/|\Omega| + |B|/|\Omega| = (|A| + |B|)/|\Omega| = |A \cup B|/|\Omega|$, because A and B are disjoint

Example of Axiom 3

• If A and B are mutually exclusive, then

• P(A or B) = P(A) + P(B)

- Example: Roll two fair coins
 - Event A: "two heads"
 - Event B: "two tails"
 - What is the probability of A or B?
 - $P(A \text{ or } B) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$

Event A	{HH}	{HH} / {HH, HT, TH, TT} = 1/4
Event B	{TT}	{TT} / {HH, HT, TH, TT} = 1/4
Event A or B	{HH, TT}	{HH, TT} / {HH, HT, TH, TT} = 1/2

Corollary of Axiom 3

The sum of the probabilities of all outcomes must be 1:

- The universe is the union of all outcomes.
- Outcomes do not overlap.
 - For example, you cannot roll both a 1 and a 2 at the same time!
- So, if we add up the probabilities of all the outcomes, we should get the probability of the universe.
- But we already know that the probability of the universe is 1: i.e., $P(\Omega) = 1$.

Laws of Probability

Definition of probability:

- $P(A) = |A|/|\Omega|$
- $P(|\Omega|) = 1$

Laws implies by the axioms:

- $P(\emptyset) = 0$
- $P(\Omega \setminus A) = 1 P(A)$
- If $A \subseteq B$, then $P(A) \leq P(B)$
- Inclusion-exclusion principle

Inclusion-Exclusion Principle

- If A and B are not mutually exclusive, then
 P(A or B) = P(A) + P(B) P(A and B)
- Example: Flip two fair coins
 - Event A: "Heads on the first coin"
 - Event B: "Tails on the second"
 - What is the probability of A or B?
 - $\circ \quad P(A \text{ or } B) = \frac{1}{2} + \frac{1}{2} \frac{1}{4} = \frac{3}{4}$

|A|+|B|

 $|A|+|B|-|A\cap B|$

Event A	{HH, HT}	{HH, HT} / {HH, HT, TH, TT} = 1/2
Event B	{HT, TT}	{HT, TT} / {HH, HT, TH, TT} = 1/2
Event A and B	{HT}	{HT} / {HH, HT, TH, TT} = 1/4
Event A or B	{HH, HT, TT}	{HH, HT, TT} / {HH, HT, TH, TT} = 3/4

ICA

Assume the following:

- There is a 60% chance of rain today
- There is a 75% chance of rain tomorrow
- There is a 20% chance of no rain either day

What is the probability it will rain today and tomorrow?

	Rain tomorrow (.75)	No rain tomorrow (.25)
Rain today <mark>(.6)</mark>	?	?
No rain today <mark>(.4)</mark>	?	.2

Define the relevant events

- A: Rain today
- B: Rain tomorrow
- A or B: Rain today or tomorrow A and B: Rain today and tomorrow

DeMorgan's Law

- \neg A: No rain today
- ¬ B: No rain tomorrow
- \neg A and \neg B: No rain today and no rain tomorrow \neg (\neg A and \neg B) = A or B: Rain today or rain tomorrow

DeMorgan's Law

- \neg A: No rain today
- ¬ B: No rain tomorrow
- $\neg A$ and $\neg B$: No rain today and no rain tomorrow
- \neg (\neg A and \neg B) = A or B: Rain today or rain tomorrow

А	В	A or B	⊐A	⊐В	¬ A and ¬ B	¬(¬A and ¬B)	
1	1	1	0	0	0	1	Truth Table
1	0	1	0	1	0	1	
0	1	1	1	0	0	1	
0	0	0	1	1	1	0	

The probability of rain today and tomorrow

P(A and B)

- = P(A) + P(B) P(A or B)
- = P(Rain today) + P(Rain tomorrow) P(Rain today or tomorrow)
- = .6 + .75 ?

The probability of rain today or tomorrow

P(A or B)

- = P(Rain today or rain tomorrow)
- = 1 P(No rain today and no rain tomorrow)
- = 1 .2
- **8**. =

The probability of rain today and tomorrow

P(A and B)

- = P(A) + P(B) P(A or B)
- = P(Rain today) + P(Rain tomorrow) P(Rain today or tomorrow)
- = .6 + .75 .8
- = .55

ICA

Assume the following:

- There is a 60% chance of rain today
- There is a 75% chance of rain tomorrow
- There is a 20% chance of no rain either day

What is the probability it will rain today and tomorrow?

	Rain tomorrow (.75)	No rain tomorrow (.25)
Rain today <mark>(.6)</mark>	.55	?
No rain today (.4)	?	.2

ICA

Assume the following:

- There is a 60% chance of rain today
- There is a 75% chance of rain tomorrow
- There is a 20% chance of no rain either day

What is the probability it will rain today and tomorrow?

	Rain tomorrow (.75)	No rain tomorrow (.25)
Rain today <mark>(.6)</mark>	.55	.05
No rain today (.4)	.2	.2

Conditional Probability

Conditional Probability

- In 2020, Brown had an acceptance rate of 6%.
 - Does this mean that all applicants had an identical 6% chance of getting in?
 - Probably not! If you won the Nobel Peace Prize in your senior year of high school, then you probably had a higher likelihood of getting in.
- The probability of gaining weight if you don't exercise is probably higher than the probability of gaining weight if you do.
- Conditional probabilities are probabilities, given an event, or "condition".
- We write P(A|B), and say "the probability of A given B"

A Worked Example

- Experimental setup: Roll two die, and record their sum.
- Given that the first roll is even, what is the probability the sum is greater than or equal to 8?

Enumerating the Sample Space

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

Conditioning the Sample Space

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

Finding the Event of Interest

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

Computing the Conditional Probability

- After conditioning on the first roll being even, there are 18 outcomes.
- Among these outcomes *only*, we can roll two dice whose sum is at least 8 in nine different ways.
 - The event of interest is {(2,6), (4,4), (4,5), (4,6), (6,2), (6,3), (6,4), (6,5), (6,6)}.
- Hence, the conditional probability is $9/18 = \frac{1}{2}!$

Formula for Conditional Probability

- P(A|B) = |A and B|/|B| = P(A and B)/P(B)
- Why? Because $|A \text{ and } B|/|B| = (|A \cap B|/|\Omega|)/(|B|/|\Omega|)$
- Notice, this implies the probability of P(A and B) = P(A|B)P(B)
- Moreover, P(A and B) = P(A|B)P(B) = P(B|A)P(A)

Independent vs. Dependent Events

Example 1

- Let A be the event that you get an A in this class
- Let B be the event that you take another computer science course
- Do these sound like independent events?
- Not so much

Example 2

- Let A be the event that you get an A in this class
- Let B be the event that I go to East Side Pockets for lunch
- These sound like independent events

Independent Events

- Let A be the event that you get an A in this class
 - Suppose this event has probability .8
- Let B be the event that I go to East Side Pockets for lunch
 - Suppose this event has probability .4
- What is the probability that you get an A in this class, given that I go to East Side Pockets for lunch?
- What I eat for lunch does not affect your grade, so the probability of you getting an A remains .8, regardless of where I eat lunch.

Independent Events (cont'd)

- Recall the following, from the definition of conditional probability:
 - P(A and B) = P(A|B)P(B)
 - P(A and B) = P(B|A)P(A)
- Mathematically, two events are independent if:
 - $\circ \quad \mathsf{P}(\mathsf{A} \,|\, \mathsf{B}) = \mathsf{P}(\mathsf{A})$
 - $\circ \quad \mathsf{P}(\mathsf{B} \,|\, \mathsf{A}) = \mathsf{P}(\mathsf{B})$
- Consequently, two events are independent if P(A and B) = P(A)P(B).

Independent vs. Dependent Events

INDEPENDENT	Rain tomorrow (.75)	No rain tomorrow (.25)
Rain today <mark>(.6)</mark>	.45 = (.6)(.75)	.15 = .645
No rain today (.4)	.3 = .43	.1

DEPENDENT	Rain tomorrow (.75)	No rain tomorrow (.25)
Rain today <mark>(.6)</mark>	.55	.05 = .655
No rain today (.4)	.2 = .42	.2