
Data Cleaning

Garbage in, garbage out!

Spring Weekend Poll Results
● Let’s poll Brown students to find out which artists they voted for to perform

during Spring Weekend.

● Our poll asks students to write in an artist’s name.
○ Pros: candidates are not limited to a fixed set of artists (anyone is fair game)
○ Cons: it’s hard to tally the results

■ How many people voted for Waka Flocka Flame?
■ Some people might write Waka Flocka; some might waka flacka, or waka floka, etc.

● We can easily change text to all uppercase or all lowercase.

● Parsing out extra words and correcting spelling is more difficult, especially in
a large data set.

What is data cleaning?
To produce technically correct data:

1. Type checking: verify that data values
are stored correctly: e.g., numbers as
numerics not characters; categories as
factors; etc.

2. Normalizing: are data values
comparable: e.g., is a gender value M
or m or Male or male, etc.; are infant
ages recorded in months or years?

Image source

https://cran.r-project.org/doc/contrib/de_Jonge+van_der_Loo-Introduction_to_data_cleaning_with_R.pdf

What is data cleaning?
To produce consistent data:

1. Correcting incorrect values (e.g.,
negative ages, pregnant males, etc.)
○ But what if a very young child is reported

married? Which is wrong, status or age?

2. Handling extreme and missing values:
○ Detect outliers, and possibly remove them
○ Possibly impute (i.e., infer) missing values
○ Use sound judgment, and always

document and explain your decisions!
Image source

https://cran.r-project.org/doc/contrib/de_Jonge+van_der_Loo-Introduction_to_data_cleaning_with_R.pdf

Type checking
Use type coercion functions:
> as.character(2017)
“2017”

> as.numeric(TRUE)
1

> as.logical(0)
FALSE

> as.factor("Male")
Male
Levels: Male

String Manipulation
● toupper & tolower: changes the case of strings
● Good style and makes processing easier

○ E.g., == is case sensitive

> toupper(c("Green", "Red"))
"GREEN" "RED"

> tolower(c("Green", "Red"))
"green" "red"

Normalization: strings
Use stringr library:
> str_trim(" Hello World!")
"Hello World!"

> str_pad("Hello World!", 15, "left")
" Hello World!"

> str_detect("Hello World!", "ello")
TRUE

> str_replace("Hello World!", "Hello", "Yellow")
"Yellow World!"

Normalization: dates
Use lubridate library:
> ymd("20110630")
"2011-06-30 UTC"

> dmy("30/06/2011")
"2011-06-30 UTC"

> mdy_hms("06302011111111")
"2011-06-30 11:11:11 UTC"

> day(ymd("20110630"))
30

> year(dmy("30/06/2011"))
2011

> hour(mdy_hms("06302100111111"))
11

Libraries for cleaning data
● stringr: str_detect, str_replace, …
● lubridate: ymd, mdy, dmy, hms, ymd_hms, …
● tidyr: gather, spread, unite, separate, …

● …

Ways to clean data
● Edit text value for a single variable to be consistent

(spelling, capitalization, spacing)

● Standardize units of measurement for a single variable

● Remove duplicate rows (common) or columns (less frequent)

