
CS0931 Intro Comp for Humanities & Social Sciences Fab Four

Activity 1

Oct. 4, 2011

Introduction to Python

Expressions

We’re going to start off by typing in some expressions. Expressions are
inputs that Python evaluates in order to produce a value, which it then
outputs. Exampes of expressions are 6 , 1 + 3 , (46 + 14) / 3 , and
x + 1.

1. Let’s try giving Python a very simple expression to evaluate. Right
now you should see the input prompt on the Python shell. The input
prompt looks like this:

>>>

2. Type 3 + 2 next to the input prompt and press Enter. This tells
Python to evaluate the expression 3 + 2 and print the answer on the
next line. You should now see the following in the shell:

>>> 3 + 2

5

>>>

Although Python does not care whether you put spaces in between the
characters in an expression, it is a good habit to put a space between
characters and mathematical operators (except parentheses). Python
evaluates 3+2 and 3 + 2 the same way, but it is easier to read if
you type 3 + 2.

3. Python uses the standard set of mathematical operators +, - , *, and
/, as well as parentheses for orders of operations. Practice evaluating
a few expressions using each of the operators.

CS0931 Activity 1 Oct. 4, 2011

4. Try having Python evaluate 1 / 3. What happens? While it may
not seem like 3 and 3.0 are any different, there IS a difference in
Python. Numbers without a decimal point, such as 6 and -12, are
called integers in Python; those that have a decimal, such as 4.5 and
3.0, are called floating point numbers or floats. The arithmetic for
the two kinds of numbers is mostly identical, but there are a few
differences. When evaluating expressions, Python rounds to integers
unless the user (that’s you) tells it to do otherwise. For example,
Python evaluates 1 / 3 as 0, but evaluates 1.0 / 3.0 , 1 / 3.0 ,
and 1.0 / 3 as .33.

5. Evaluate 3.0 * (1.0 / 3.0). Since 1.0 and 3.0 are floats, the answer
Python gives you will be the float 1.0. In addition, since floats are not
rounded, we know that the answer is exact. If the answer had been 1,
then we couldn’t have known whether the answer had been rounded
or was exact.

Assignment Statements

Besides expressions, the other type of input we can give Python are state-

ments. Unlike expressions, statements are not evaluted to a specific value
by Python, and therefore there is no output after a statement. An impor-
tant kind of statement is an assignment statement. Assignment statements
(also simply called assignments), instead of telling Python to evaluate an
expression and output a value, tell Python to assign a value to a variable.
Here is a simple example of an assignment:

>>> x = 10

The variable to which you are assigning a value always goes on the left side
of the equals sign. In the x = 10 statement above, x is the variable to be
assigned a value and 10 is the value which it is being assigned.

1. Hit Enter after typing in x = 10. You should see the following:

>>> x = 10

>>>

Python has now assigned the value 10 to the variable x. What happens
now if you type in the expression x and hit Enter? Try evaluating the

2

CS0931 Activity 1 Oct. 4, 2011

expressions x + 5, x * 9, and 100 / x. Now assign the value 4 to
the variable y and tell Python to evaluate x + y.

2. Python allows variables to be reassigned to a new value. Assign x =

15, then ask Python to evaluate x. Be careful when reassigning values,
because once a variable is reassigned there is no way to retrieve the
variable’s original value (in this case 10).

3. Variables are extremely useful for storing values; they are the pro-
gramming equivalent of cells in Excel. In addition, since variables can
be more than just one letter, they allow users to give values readable
and reasonable names. For example:

pointTotal = 385.0

numberOfTests = 4

averageScore = pointTotal / numberOfTests

This is an extremely clear and readable program that computes the av-
erage test score for a student using the variables pointTotal, numberOfTests,
and averageScore.

4. Evaluate the expression xy. What’s the value? (Recall that x is still
15 and y is still 4). The only way to perform multiplication is with *.
xy is just a variable name that hasn’t been assigned a value.

Lists

A list is a collection of items.

1. Let’s start by creating a list of integers. Type the following into a
shell:

>>> mylist = [1, 2, 3]

The assignment above works just like the other assignment statements
we’ve used. The variable is mylist and the value it is assigned is the
list [1, 2, 3]. Python knows that this is a list because of the square
brackets, and distinguishes between the different items in the list by
the commas. This list has three items - the integers 1, 2, and 3.

3

CS0931 Activity 1 Oct. 4, 2011

2. Tell Python to evaluate the simple expression mylist. This outputs the
entire list. How do we access a single item in the list? Indexing! Lists
in Python know about their contents, so we can write an expression
asking mylist about the value at the appropriate spot in the list. This
is called indexing. Type in the expression mylist[0] and hit enter.
Python gives you the first item in the list. List indices represent the
positions of the list and start at 0, instead of 1. Ask Python to evaluate
mylist[1] and mylist[2]. Now ask Python to evaluate mylist[3].
What happens?

3. We can modify lists by reassigning new values to the different indices
in a list. Enter the following assignment:

>>> mylist[2] = 4

This reassigns the spot at mylist[2] to hold the value 4. Tell Python
to evaluate mylist and then mylist[2].

4. We can also write an expression asking Python to output all the values
within a certain range of indices in a list. This is done using the colon
operator. Assign the list [1,2,3,4] to the variable list1. Now have
Python evaluate the following expression:

>>> list1[1:3]

The colon operator tells Python to evaluate all the values between the
indices on either side of the colon, including the value at the index on
the left side of the colon, but not including the value at the index on
the right side of the colon.

5. Now tell Python to evaluate list1[:3] and list1[1:]. If you don’t
specify a starting index Python starts at the beginning of the list.
Likewise, if you don’t specify an ending index, Python ends at the end
of the list.

6. Lists can also be combined with other lists. Assign the variable list2
to the list [5, 6, 7], and then enter the following assignment:

>>> list3 = list1 + list2

Now ask Python to evaluate the expression list3 to see what it does.

4

CS0931 Activity 1 Oct. 4, 2011

7. Try assigning the variable list4 to the value list3 + 8. Python
gives you an error message because you can only combine a list with
another list. To add an 8 to the end of list3, we have to turn the 8
into a list. To do this we put square brackets around the 8. Enter the
following assignment statement:

>>> list4 = list3 + [8]

Now tell Python to evaluate list4.

8. We can also put brackets around variables to add them to a list. For
example:

>>> a = 5

>>> b = [1, 2, 3, 4]

>>> c = b + [a]

This adds the integer a onto the end of list b by making a into a list
with only one item in it. Tell Python to evaluate the expression c.

9. Assign the following variables:

>>> list1 = [1, 2, 3]

>>> list2 = [4, 5, 6]

What happens if you assign list[1:1] to equal the value list2?
Reassign list1 back to [1, 2, 3]. Now assign list1[1:2] to equal
list2. Take a second to make sure you understand what Python is
doing. Finally, reassign list1 back to [1, 2, 3]. Assign list1[1]

to equal list2. How is this different from above?

10. Ask Python to evaluate the expression len(list2). What does this
represent? Do you remember what the highest index of list2 is?
Why are these numbers different?

Strings

In Python and in computer languages in general, a string is a sequence of
characters. Examples of strings are ‘‘Python’’ or ‘‘The Count counts

everything.’’. Strings are delimited by quotation marks. In Python a
string can be assigned to a variable as the variable’s value.

5

CS0931 Activity 1 Oct. 4, 2011

1. Enter the following assignments:

>>> string1 = "The Count"

>>> string2 = "counts everything."

Now ask Python to evaluate the expression string1.

2. Write an assignment combining (concatenating) string1 and string2

into the variable string3. Hint: how did we combine lists?

3. We can combine more than one string at a time by using multiple +

operators. In addition, Python recognizes a blank space as a valid
string character. Concatenate string1 and string2 again, making
sure there is a space between the words Count and counts.

4. We can index into strings the same way we can with lists. Ask Python
to evaluate the expressions string1[5] and string1[6:10].

6

