09-25

CS 53, Fall 2017

Due September 27 at 2:59 pm

Problem 1: Let $C = \{ \#, \$, \% \}$. Define four *C*-vectors a_0, a_1a_2, a_3 , according to the following table: $\parallel \# \$ \%$

- 1. Form Vecs representing the vectors a_0, a_1, a_2, a_3 .
- 2. Write a procedure that, given a C-vector x, returns the list $[a_0 \cdot x, a_1 \cdot x, a_2 \cdot x, a_3 \cdot x]$.

Problem 2: In this problem, we will represent a row-matrix as a list of C-vectors represented as Vecs. Write a one-line procedure row_matrix_times_vec(M, x) that, given a row-matrix M thus represented and given a C-vector x represented as a Vec, returns the product of the row-matrix and the vector x. The output should be represented as a list of scalars. Recall that a row-matrix is intended to represent a dot-product function, and that multiplying a row-matrix by a vector is equivalent to applying the corresponding function to the vector.

Problem 3: Let $C = \{ \#', \$', \$', \$' \}$. Define four vectors a, b, c, d, all with domain C, according to the following table:

- # \$ % 2 3 4 \boldsymbol{a} b 1 0 -1 3 5 c4 8 2 d4
- 1. Form Vecs representing the vectors a, b, c, d.
- 2. Write a procedure that, given a C-vector x, returns the {'a', 'b', 'c', 'd'}-vector, represented as a Vec, that maps 'a' to $a \cdot x$, maps 'b' to $b \cdot x$, maps 'c' to $c \cdot x$, and maps 'd' to $d \cdot x$.

Problem 4: Let $R = \{ a', b', c', d' \}$. Define three *R*-vectors v_0, v_1, v_2 , according to the following table:

	a	.p.	C	ď
$oldsymbol{v}_0$	2	1	3	8
$oldsymbol{v}_1$	3	0	4	4
$oldsymbol{v}_2$	4	-1	5	2

- 1. Form Vecs representing the vectors v_0, v_1, v_2 .
- 2. Write a procedure that, given a three-element list $[\alpha_0, \alpha_1, \alpha_2]$, returns the *R*-vector that is the value of the linear combination $\alpha_0 v_0 + \alpha_1 v_1 + \alpha_2 v_2$. The output should represented as an Vec.

Problem 5: In this problem, we will represent a column-matrix as a list of R-vectors represented as Vecs. Write a one-line procedure col_matrix_times_vec(M, x) that, given a column-matrix M thus represented and given a vector x represented as a list of scalars, returns the R-vector that is the product of the column-matrix M and the vector x. Recall that a column-matrix is intended to represent a linear-combinations function, and that multiplying a row-matrix by a vector is equivalent to applying the corresponding function to the vector.

Problem 6: Find a set $\{v_1, \ldots, v_n\}$ of vectors (*n* is up to you), each represented as a list, whose affine hull equals

[4,5,6] +Span $\{[-3,-2,-1],[7,8,0]\}$

Problem 7: Find a vector u and a set $\{v_1, \ldots, v_n\}$ of vectors (n is up to you), each represented by a list, such that $u + \text{Span } \{v_1, \ldots, v_n\}$ equals the affine hull of

 $\{[256, 512, 1024], [3.14159, 2.718281828, 53], [1, 10, 100]\}$