
 
 
CSCI0330 Intro Computer Systems        Doeppner 

Project Database 
Due: December 13, 2019 at 11:59pm 

Important​ ​note:​​ You may ​not​ hand this project in late unless you have an extension from 
Professor Doeppner. If you hand in after 11:59pm on December 13th, your project will not be 
graded and you will receive a 0. 

 

1 Introduction 2 

2 Support Code 2 
2.1 Client Interface 3 

3 Database 3 
3.1 db_add() 4 
3.2 db_query() 4 
3.3 db_remove() 4 
3.4 db_print() 4 
3.5 db_cleanup() 5 
3.6 interpret_command() 5 

4 Assignment 5 
4.1 Networking 6 

4.1.1 Questions 7 
4.2 Multithreading 7 
4.3 Thread Safety 7 

4.3.1 Coarse-Grained Locking 7 
4.3.2 Fine-Grained Locking 8 
4.3.3 Stop and Go 8 

4.4 Cancellation and Signals 8 
4.4.1 Cancellation 9 
4.4.2 Signal Handling 11 

5 Demos and Testing 11 
5.1 Running the Client 11 
5.2 Demos 11 
5.3 Testing Resources 12 
5.4 Testing Features 12 
5.5 Testing for Thread Safety 13 

6 Tips 13 

1 



 
 
CSCI0330    Project Database   December 13, 2019 

7 Handin 13 

8 Grading 14 

 

1 Introduction 

 

A real creature of the C as photographed by twd 

After compiling the underwater photos he took on a recent ​diving expedition​, twd 
believes he’s discovered a new species of fish. However, with more than 27,000 known species 
of fish in existence, he has no easy way of determining whether his proposed name, ​Exsaedisys 
assemblae​, is already taken. He decides to commission a database that maps known species of 
fish to the publications in which they were first named. Unfortunately, the Tstaff’s in-house 
LOLCODE​ developer is having difficulty making the database thread-safe and able to support 
multiple clients. Thus, in his time of need, twd turns to you. 

In this project, you will be creating a simple server to manage a database of key-value 
pairs over a network. Multiple concurrent users should be able to search for items in the 
database, add new entries and remove existing entries. 

2 Support Code 
The support code for this project consists of the following files: 

2 

https://cs.brown.edu/~twd/fish/start.htm
https://en.wikipedia.org/wiki/Esoteric_programming_language#LOLCODE


 
 
CSCI0330    Project Database   December 13, 2019 

● client.c:​ A C file that produces the ​client​ program, including the client REPL and 
client-side networking. 

● server.c:​ A C file containing the ​server​ program. 

● comm.h:​ A header defining abstraction for server-side networking helper functions. 

● comm.c:​ A C file that implements the server-side networking helper functions. 

● db.h: ​A header containing function declarations for the database. 

● db.c: ​A C file implementing database functionality. 

● scripts: ​A directory containing database test scripts. Each of these scripts is just a series 
of client commands in a file, one per line. Feel free to make your own in addition to those 
provided. These scripts are useful for testing your database as well as seeding it with 
initial data. ​See section 5.2 for more information on scripts.  

In addition, macOS may not implement some pthread functionality such as read/write locks and 
barriers. To accommodate this, we have attached the following files: 

● pthread_OSX.c:​ A C file implementing missing OSX pthread functionality. 

● pthread_OSX.h:​ A header file defining declarations and structs for OSX pthread 
functionality. 

For this project, you will be modifying ​db.c​ to make it thread-safe, you will be filling out 
server.c​ to handle multiple clients and respond to signals, and you will be using ​comm.c 
to answer the questions in ​questions​. 

Note that you will need to write a Makefile for the project, which produces the executables 
server ​and ​client​. In order to enable all of the necessary compiler warnings, you should use the 
flags from your Shell makefiles, with the addition of the ​-pthread​ flag. You will only ever need 
to directly run ​server​ to start the server and run ​client​ to connect to the server. 

You can install this project by running 

    ​cs0330_install database 

 

2.1 Client Interface 

The client program has been implemented for you. In the provided stencil, the client is written to 
connect to your server and interact with the database. The client supports client-only commands 
described below, while the server supports ​server-only commands​. You can input queries to the 

3 



 
 
CSCI0330    Project Database   December 13, 2019 

client interface from either a script file or a REPL and the client will send them to the server. The 
server then processes each query and sends an appropriate response to the client. 

The client can interact with the database using the following commands: 

● a <key>​ ​<value>​: Adds ​<key>​ into the database with value ​<value>​. 

● q <key>​: Retrieves the value stored with key ​<key>​. 

● d <key>​: Deletes the given key and its associated value from the database. 

● f <file>​: Executes the sequence of commands contained in the specified file. 

A client will close its connection to the server and exit upon reaching the end of a script file, or 
on ​CTL+D​ if reading from the command line. 

3 Database 
The database, implemented in ​db.c​, consists of a collection of nodes organized in a binary 
search tree (which is not necessarily balanced). Each node contains a pointer to a left and right 
child, either or both of which may be null pointers. The key associated with a given node is 
lexicographically​ greater than all keys in the node’s left subtree, and lexicographically less than 
all keys in the node’s right subtree. In other words, an in-order traversal of the tree nodes yields 
a lexicographical ordering of the corresponding keys. 

The database supports the following functions: 

3.1 ​db_add() 

The ​db_add()​ function calls ​search()​ to determine if the given key is already in the database. 
If the key is not in the database, the function creates a new node with the given key and value 
and inserts this node into the database as a child of the parent node returned by ​search()​. 

3.2 ​db_query() 

The ​db_query()​ function calls ​search()​ to retrieve the node associated with the given key. If 
such a node is found, the function retrieves the value stored in that node and returns it. 
Remember to handle edge cases like an empty database or a missing key. 

3.3 ​db_remove() 

The ​db_remove()​ function calls ​search()​ to retrieve the node associated with the given key. If 
such a node is found, the function must delete it while preserving the tree ordering constraints. 
There are three cases that may occur, depending on the children of the node to be removed: 

4 

https://en.wikipedia.org/wiki/Lexicographical_order


 
 
CSCI0330    Project Database   December 13, 2019 

● Both children are ​NULL​: In this case, the function simply deletes the node and sets the 
corresponding pointer of the parent node to ​NULL​. 

● One child is ​NULL​: In this case, the function replaces the node with its non-​NULL​ child. 

● Neither child is ​NULL​: In this case, the function finds the leftmost child of the node's right 
subtree and replaces the removed node with this one. Since the replacement node has 
no left child, it is easy to remove it from its current position, and since it is the leftmost 
child of its subtree it can occupy the position of the deleted node and satisfy the tree's 
ordering constraints. 

3.4 ​db_print() 

The ​db_print()​ function performs a ​pre-order​ traversal of the tree, printing the node's 
representation and then recursively printing its left and right subtrees. It will attempt to print to a 
file with the given filename, or stdout if none is provided. Be sure to remove trailing whitespace 
(e.g.​ ​newlines) from the filename! 

It is important that you implement this function as specified. Our testing suite ​requires ​this 
function, and it must be thread safe. 

3.5 ​db_cleanup() 

The ​db_cleanup()​ function should ​free​ all dynamically-allocated nodes in the database. You 
should call this function before exiting on the server, and ​only​ when you are certain that no other 
threads are using or will use the database. You should use the variables in the 
server_control_t​ struct located near the top of ​server.c​ to ensure that all threads are 
terminated ​before​ you call ​db_cleanup​ in your main thread. 

3.6 ​interpret_command() 

The ​interpret_command()​ function gets called by the server to interpret a command from a 
client, call database functions, and store the response. 

4 Assignment 
You will be modifying the code to allow for multiple clients (multi-threading), thread-safety, signal 
handling and client cancellation. While the client-side code is provided for you, you will be 
implementing the server-side. ​You will only need to modify ​server.c​, ​db.c,​ and possibly 
db.h​ to complete the code-component of this project. 

This assignment is split up into four parts. We recommend starting this project early because 
you'll be applying a lot of different concepts.  

5 

https://www.geeksforgeeks.org/tree-traversals-inorder-preorder-and-postorder/


 
 
CSCI0330    Project Database   December 13, 2019 

● Part 1: Networking 

○ All the client-side ​networking​ functions have been implemented for you, along 
with the entire client program, in ​client.c​.  

○ All the server-side ​networking​ functions have also been implemented for you in 
comm.c​. However, you are responsible for implementing the rest of the server 
program. Thus, you will be using the networking functions from ​comm.c​ to help 
set up your server in ​server.c​.  

○ As part of your assignment, you will submit written answers to questions related 
to the networking portion of this project (see ​section 4.1.1​). 

● Part 2: Multiple Clients (Multi-threading) 

○ Your server must be able to handle multiple clients. Each connection from a 
client to the server should be serviced by a thread. You must maintain a list of 
these client connection threads. 

● Part 3: Thread Safety 

○ The database must implement fine-grained locking (see below for explanation). 

○ Your server must be able to handle ​“s”​ (stop), ​“g”​ (go) commands using a 
condition variable and mutex, and ​“p”​ (print). 

● Part 4: Cancellation and Signal Handling 

○ When the server receives an ​EOF​ from ​stdin​, all client connection threads 
should be immediately terminated (via cancellation), after which the server 
should exit cleanly. You must also ensure that no new ​client_t​ structs are 
added to the thread list after you call ​delete_all()​ from the main thread when 
your server REPL terminates. Allowing this would cause your server to terminate 
with a non-empty thread list which would result in a memory leak! When 
debugging this you may find it useful to ​assert​ that the list is empty before 
calling ​db_cleanup()​ (Note, when a client loses connection to the server, it 
should shut itself down). 

○ When the server receives a ​SIGINT​, all client connections should be immediately 
terminated via cancellation, after which the server should continue its input loop. 
Your implementation must allow users to spawn new clients after a ​SIGINT​ is 
delivered to the server. The server should behave exactly as it did before 
receiving a ​SIGINT​ (only now the database is potentially non-empty because of 
operations requested by previous clients). 

6 



 
 
CSCI0330    Project Database   December 13, 2019 

4.1 Networking 
Your first task is to establish a TCP connection between a client and the server using the 
support code we provide. Like in the Networking Lab, you will be using a socket-based server.   1

To establish the connection, the client must find the server's internet address using 
getaddrinfo()​ and then set up a TCP connection with it. After finding the appropriate socket, 
the client creates an I/O stream to communicate with the server. Finally, the client uses 
fputs()​, ​fgets()​ and ​fflush()​ to transmit and receive data. 

We provide networking support code in ​comm.c​. You will use these functions to handle multiple 
client connections. All clients should access the same shared database.  2

There are also questions listed below about the purpose and implementation of the support 
functions for you to answer. Take a look at the demo server provided with the first network 
programming lecture for a refresher if you need one! 

4.1.1 Questions 

You’ll find the written questions in the file named ​questions​ in your ​database​ folder. Answer the 
provided questions in this file based on the provided file ​comm.c​, and make sure it is included 
when you hand in. We are looking for a good amount of detail, so if you’re not sure whether to 
add a detail or not, we recommend erring on the side of too much, rather than too little, 
information. 

4.2 Multithreading 
To implement the multithreaded version of the server, we suggest that you start with 
client_constructor()​ so that it spawns a new thread which executes ​run_client()​. You 
will also need to ensure that ​client_destructor()​ is called at some point for each client, 
probably at the end of ​run_client()​. 

Because the server does not technically know what a client thread is going to do next, it is 
difficult for the server to clean up the underlying client thread resources while it (the server) is 
still running. To make our lives easier, we would like the client threads to clean themselves up. 
The best way to do this is probably to detach each client thread. Be careful when you clean up 
at the end—the database should be deleted, but not before all clients are done with it. 
Unfortunately, If we detached our client threads we cannot wait for them to finish with 

1 ​We are providing a fully functional ​client.c ​, but you are welcome to dissect and tamper with it. Keep in mind, 
however, that if you do, it will become more difficult for us to help you with bugs! 
2 Note that the database will not yet be thread-safe, so your program may behave incorrectly or crash if it receives 
input from more than one client at a time. You will fix this shortly. 

7 



 
 
CSCI0330    Project Database   December 13, 2019 

pthread_join()​. ​(Hint: One way to get around this is to maintain a thread-safe counter of the 
number of active threads.) 

You should error-check pthread library functions using ​handle_error_en()​ in ​comm.h​ where 
appropriate. 

4.3 Thread Safety 
Now that you have multiple threads, you must modify the database so that it is thread-safe. 
There are two ways to do this: ​coarse-grained locking​ or ​fine-grained locking​. Both techniques 
are discussed below, but you ​must​ implement fine-grained locking. 

In addition to making the database thread-safe, you will add some additional features to the 
server to facilitate testing. 

4.3.1 Coarse-Grained Locking 

The simplest way to ensure thread safety is to put a read/write lock on the whole database. 
Each thread should obtain an appropriate type of lock (read/write) before accessing the 
database. 

We recommend you implement and test coarse-grained locking first to get used to read/write 
locks before attempting the more difficult fine-grained locking scheme described below. 

4.3.2 Fine-Grained Locking 

Coarse-grained locking is easy to implement, but it is not very efficient. For any modifications to 
occur, a single thread must obtain exclusive access to the entire database. This strategy 
ignores the fact that nodes in the tree have some level of independence: an operation writing to 
one part of the database tree is completely separate from another operation writing to a distinct 
part of the tree. A more efficient design would use ​fine-grained locking​. In this design, each 
node in the tree has its own read/write lock. These locks must be carefully managed to maintain 
database consistency while allowing multiple threads to access and modify distinct parts of the 
database simultaneously. 

To implement fine-grained locking, you should modify the ​search()​ function in ​db.c​ to accept 
an additional parameter specifying read- or write-locking. This function should lock the root node 
and percolate down the tree, locking each node ​before​ releasing the lock on its parent. You will 
also have to modify the other database functions and the ​node_t​ structure so that they handle 
locking appropriately. Be sure to update ​db_print()​ because it does not use ​search()​. You 
must think carefully about the operations involved to avoid deadlocks and ensure that the 
database stays consistent. 

8 



 
 
CSCI0330    Project Database   December 13, 2019 

4.3.3 Stop and Go 

To test thread safety you should add ​“s” ​(stop) and ​“​g​”​ (go) functionality to your server REPL. 
See section 5.3 for more information.  

4.4 Cancellation and Signals 
In the last part of this assignment, you will add signal handling and cancellation to your 
database. Specifically, you must update the database so it supports the following behavior: 

● When the server process receives an ​EOF​ from ​stdin​, the server should stop accepting 
input from clients and all clients should be immediately terminated, after which the 
program should exit cleanly. 

● When the server process receives a ​SIGINT​ signal, all existing clients should terminate. 
The program should continue to accept input and create connections to new clients 
when requested. 

To implement these two features, you should maintain a list of all client connection threads. 
When a thread is created, it should add itself to the list. To terminate all current threads, we 
cancel all threads on the list. When a thread terminates (either from cancellation or naturally), it 
removes itself from the list. 

When working with this part of the assignment, it's important to ensure that your program is not 
leaking any memory. You should ensure that the client thread data is cleaned up appropriately 
and that your thread list is completely empty before the server cleans up the database upon 
termination. To determine if a leak detected by valgrind is occurring due to this library behavior, 
check the trace of the reported leak. If the trace begins at ​pthread_cancel()​ or 
pthread_cancel_init()​, and only references lines of code in library C files, then it's not a 
result of your code. You may also notice it if running a variable number of clients against your 
server produces the same roughly constant leak. This apparent leak is visible in the demo we 
have provided. Valgrind is a helpful debugging tool, but it is not perfect.  Whenever in doubt 
about whether a valgrind error is related to your code, try running the same script and 
occurrences with the demo and check for the same error. If you encounter the same error with 
the demo, it is likely not a problem you should worry about. If you are still unsure about a leak in 
your code, please talk to a TA or post on Piazza. 

Note that you must be careful about the timing involved—if the listener thread creates a new 
client, then the main (REPL) thread reaches an ​EOF​, it may issue a “cancel all'' command before 
the new client connection has added itself to the list. To address this, you should have some 
thread-safe mechanism for the server to indicate that it is no longer accepting new clients, and 
each new client should ensure that the server is still accepting clients before it adds itself to the 
list of clients and begins to serve the client with which it is associated. 

9 



 
 
CSCI0330    Project Database   December 13, 2019 

4.4.1 Cancellation 

To implement Part 3: Thread Safety, you will need to use ​cancellation​, a feature of the pthreads 
library that allows for semi-asynchronous thread termination. A thread may be marked for 
cancellation at any time using the ​pthread_cancel()​ function; however, it is not cancelled 
immediately. When a thread marked for cancellation reaches a ​cancellation point​ (one of a set 
of library functions specified by the POSIX standard) it is terminated. You can find a list of 
POSIX-specified cancellation points using ​man 7 pthreads​. Of the support code functions, 
comm_serve()​ acts as a cancellation point. It is safe to call ​pthread_cancel()​ on a thread any 
number of times until the thread terminates. 

Each thread maintains a stack of ​cleanup handlers​ using the functions 
pthread_cleanup_push()​ and ​pthread_cleanup_pop()​. When a cancelled thread reaches a 
cancellation point, the current cleanup handlers are executed in first-in-last-out order. 

You will need to modify the client-handling threads to properly handle cancellation by installing 
appropriate cleanup handlers and modifying the cancel state as appropriate. For instance, the 
following block of code: 

void foo(pthread_mutex_t my_mutex, pthread_cond_t my_cond) { 
    pthread_mutex_lock(&my_mutex); 
 
    while(!(some condition)) 
    // Cancellation point - the thread could stop executing here 
    pthread_cond_wait(&my_cond, &my_mutex);  
 
    // If the thread were cancelled inside pthread_cond_wait, this mutex  
    // would never be unlocked 
    pthread_mutex_unlock(&my_mutex); 
} 

could be replaced with: 

// Cleanup handler called when thread is cancelled to unlock mutex so the  
// thread doesn't quit while holding the lock 
void cleanup_pthread_mutex_unlock(void *arg) { 
    pthread_mutex_unlock((pthread_mutex_t *) arg); 
} 
 
void foo(pthread_mutex_t my_mutex, pthread_cond_t my_cond) { 
    pthread_mutex_lock(&my_mutex); 
 
    // Push the mutex unlock handler onto the stack of cleanup functions in  
    // case the thread is cancelled while holding the lock 
    pthread_cleanup_push(&cleanup_pthread_mutex_unlock, (void*) (&my_mutex)); 
 
    while(!(some condition)) 

10 



 
 
CSCI0330    Project Database   December 13, 2019 

        pthread_cond_wait(&my_cond, &my_mutex);  // Cancellation point 
 
    // Pop and execute cleanup handler to release the lock regardless of  
    // whether thread was cancelled 
    pthread_cleanup_pop(1);  
} 

This way, the mutex will definitely be unlocked, even if the thread is cancelled while waiting. 

Note that cancellation only occurs at most once per thread, so a cleanup handler that is 
executed as a result of explicit cancellation via ​pthread_cancel()​ may safely contain 
cancellation points. However, cancellation ​can​ occur while executing a cleanup handler that is 
explicitly called via ​pthread_cleanup_pop()​. 

Each thread has a ​cancel state​, which sets whether or not a thread can be terminated at a 
cancellation point. The cancel state can be controlled with the ​pthread_setcancelstate() 
function. You could even disable thread cancellation on a specific caller thread with this 
function. Consider when it may be necessary to call this function in your implementation. 

Hint: Think about how any cancellation points in thread_cleanup might cause issues. 

Note​: The ​pthreads​ manual page states that ​pthread_rwlock_{wr,rd}lock()​ functions ​may 
be cancellation points. These functions ​are not​ implemented as cancellation points on Linux, 
therefore you may assume that they are not cancellation points in your implementation. 

4.4.2 Signal Handling 

Signals occur at the process level, making them somewhat difficult to handle in multithreaded 
code. For this project, you will handle signals in a separate thread that runs alongside the server 
and client threads. To set this up, you should first mask off ​SIGINT​ for the entire process using 
pthread_sigmask()​. Then, create a special signal monitoring thread that uses the ​sigwait() 
function to listen for ​SIGINT​ signals and cancel running clients. 

5 Demos and Testing 
In this assignment we provide you with various resources to check the functionality of your 
database as well as double check the functionality of your networking code. Often you will start 
out using a client REPL to interact with your database but it will quickly become much more 
efficient to run clients on scripts. These scripts are nothing more than a plain text list of 
commands described in the Client Interface section.  

5.1 Running the Client 

A single client can be run with the command  
 

11 



 
 
CSCI0330    Project Database   December 13, 2019 

 

./client <hostname> <port> 

 
And can be controlled using the client’s REPL.  Refer to section 2.1 of the handout for a list of 
the client’s REPL commands. 
 
Once you are confident in your server’s performance with a single client, you can try testing 
using the scripts with multiple concurrent clients with the command 
 

./client <hostname> <port> [script] [occurrences] 

 
where script can be any one of the files in the scripts directory and occurrences is the number of 
concurrent clients to run the script file.  

5.2 Demos 
We have provided a demo binary for this project: ​cs0330_db_demo_server​. This is a fully 
functional DB server, with all parts of the assignment implemented, for you to get a better feel 
for the finished result. 

5.3 Testing Resources 

In the ​scripts/​ directory, you are provided with a file ​seacreatures.txt​ with a series of add 
commands mapping sea creatures to their discoverers. Additionally, for larger tests, you can 
use the ​names2013.txt​ and ​names1880.txt​ files to quickly initialize a much larger database 
mapping baby names from those years to their frequency. In addition, the ​scripts​ directory 
contains ​test1.txt​, which you can use to test your database's thread safety in Part 2 by calling, 
for example, ​f test1.txt​. 

You can check tree output, using the ​p​ command (described ​below​). You can then check 
whether this output is a valid binary search tree with the following script: 

    cs0330_db_check <txtfile> 

where ​<txtfile>​ is the file containing the output of the ​p​ command. For example, if you input ​p 
tree.txt​ in the server REPL, ​cs0330_db_check tree.txt​ would check that the database’s 
tree is valid. 

To visualize the tree output from the ​p​ command, we have provided a script that creates a PNG 
image of the database. To use this script, enter the following command in a terminal: 

    cs0330_db_vis <txtfile> <pngfile> 

where ​txtfile​ is the file containing the output of the ​p​ command, and ​pngfile​ is the filename 
for the resulting PNG image. 

12 



 
 
CSCI0330    Project Database   December 13, 2019 

 

 

 

5.4 Testing Features 

To test thread-safety, you should add the following functionality to your server code. When the 
server REPL encounters the line ​“s”​, all client threads should temporarily stop handling input. 
The line ​“​g​”​ should resume activity. This feature should allow you to test your database's thread 
safety by pausing activity, creating several clients, and then running them all at once. To 
implement this feature, you should use a “stopped'' flag with a condition variable (and 
associated mutex). 

When the server encounters ​“​p​”​, it should call ​db_print()​ on the database. This will help you 
test by allowing you to see the state of the database. You may also provide a filename to 
db_print()​ if you want the output in a file instead of standard out. 

 

5.5 Testing for Thread Safety 

Although cs0330_db_check will give you a good idea of whether your locking schemes are 
correct and producing consistent trees, it is still possible that your database is not thread safe. 
To check for thread safety, you can run the following command 

valgrind --tool=helgrind ./server <port> 

This should print any data races or lock violations.  You only need to be concerned with any 
races or violations that occur within db.c or server.c.  When in doubt about a certain error, 
compare your valgrind output to the demo.  If the demo gives the same errors, then it likely isn’t 
something you need to be concerned with. 

6 Tips 
This project has a lot of thread-related functions you may be using for the first time. Be sure to 
check the man pages for each one so you can understand how each one works! 

As you have probably seen, debugging programs involving multiple processes can be much 
more confusing than debugging a single component on its own. However, GDB has several 
tools that may be able to come to the rescue! 

A basic functionality of GDB in general is to pause program execution at a specified point and 
investigate the state of the system. The best way to do that here is to view the current threads 
with ​info threads​. The current thread (GDB is able to watch the stack of a single thread of 
execution at a time) will have a star next to it, and you can then switch to a thread with ​thread 
<thread number>​. Each thread can give you a ​backtrace​, and if you want to see them all at 

13 



 
 
CSCI0330    Project Database   December 13, 2019 

once, you can try something like ​thread apply all backtrace​, which will give you the 
backtrace for all threads. This works for other commands as well! 

If you are facing a deadlock, you will want to interrupt execution with ​CTRL+Z​ and dig your way 
through mutexes and so forth to identify which resources are causing the problem. You can 
move through a trace with ​frame <frame number>​. If you find that a particular thread is stuck 
in, say, ​pthread_mutex_lock()​, you'll be able to see which mutex is being waited on, and 
which thread owns it. Then switch to that thread and see what it is waiting for, and so on. For 
more on debugging deadlocks, visit ​this helpful link​. 

Keep in mind other common debugging techniques like setting watchpoints, calling functions 
within gdb, setting conditional breakpoints, etc. and you’ll have a much better time! 

7 Handin 
To hand in your database implementation, run 

    cs0330_handin database 

from your project working directory. Make sure you include all C files, your Makefile, the 
answers to the written questions, and a README. If you wish to change your handin, you can 
do so by re-running the handin script. Only your most recent handin will be graded. 

8 Grading 
This project will be graded according to the following categories, ordered by weight: 

● Minimum Functionality 

○ Your client and server should communicate correctly. 

○ You should at least implement coarse-grained locking. 

● Functionality 

○ Your client and server should communicate correctly. 

○ You should cleanly start and close connections. 

○ You should correctly implement fine-grained locking. 

● Correctness 

○ Your server and database should be able to correctly handle multiple clients at 
once. 

14 

https://en.wikibooks.org/wiki/Linux_Applications_Debugging_Techniques/Deadlocks


 
 
CSCI0330    Project Database   December 13, 2019 

○ Your database should be memory safe and should work. 

○ Your answers to our provided questions should be accurate and provide enough 
detail to be fully explained. 

● Style 

○ Your code should be readable and commented and have a README. 

○ Please run the reformat script (​cs0330_reformat​) on any C files you have edited 
immediately before your final hand in, even if you’ve run it before. This ensures 
that the most recent edition of your code passes our format autograder.  

 
 
Important​ ​note:​​ You may ​not​ hand this project in late unless you have an extension from 
Professor Doeppner. If you hand in after 11:59pm on December 13th, your project will not be 
graded and you will receive a 0. If you receive a grade below C on this project, the last day to 
request a grade review is December 16. 

15 


