
CS17 Integrated Introduction to Computer Science Hughes

Lecture 23: Currying, Big-O, Records, and
BST

10:00 AM, Oct 28, 2019

Contents

Objectives

By the end of class you’ll:

• know what a BST is, and the runtime for looking something up in one

• Prove some Big-O lemmas

• know what a record is and learn currying

1 Multi-parameter Procedures

We’ve written two procedures (one anonymous and one user-defined), each of which adds 17 to
its parameter. Similarly, we could write a procedure (or two) that adds 18 to its parameter. Or
smelling abstraction, we could write a more general procedure that consumes two parameters and
produces their sum. Opting for anonymity, here’s how that would look:

fun (x, y) => x + y

Now for the tricky question. What is the type of this anonymous procedure? This question is
tricky because this procedure appears to consume two parameters, but Reason procedures can only
consume one parameter!

Question: Is the type of this anonymous procedure int ∗ int ->int?

Answer: I’m afraid not. That would be the type of a procedure that consumes a 2-element tuple
as its sole input:

fun (x, y) -> x + y

What’s going on here is that

fun x y -> x + y

CS17 Lecture 23: Currying, Big-O, Records, and BST10:00 AM, Oct 28, 2019

is actually syntactic sugar for

fun x -> (fun y -> x + y)

As you can, see, we have one procedure that consumes an int and produces a procedure. The
produced procedure in turn consumes an int and produces an int.

This means of defining multi-parameter procedures is called currying . 1

With it, we nest one-parameter procedures, one for each parameter we need. That way, all are
bound within the body of the innermost procedure just as they would be bound in the body of a
multi-parameter procedure in Racket.

The type of a curried procedure follows from its definition. For example, the type of our anonymous
procedure is:

int -> (int -> int)

As the definition of add consists of two nested fun expressions, the type of add consists of two
nested -> type-expressions. This correspondence is the key to understanding the types of curried
procedures, which is why it is important to remember the way multi-parameter fun expressions
desugar.

Let’s see how function application works:

(((fun x -> (fun y -> (fun z -> x + y + z))) 1) 2) 3
=> ((fun y -> (fun z -> 1 + y + z)) 2) 3
=> (fun z -> 1 + 2 + z) 3
=> 1 + 2 + 3
=> 6

Here is our same adding procedure from before, applied to three arguments. As you can see, each
application eliminates one of our nested procedures until we just have 1 + 2 + 3 left, which evaluates
normally.

�� � � ��� �� ��� Writing all those parentheses seems a bit verbose, right? Even in Racket you don’t need to
introduce a new pair of parentheses for each and every argument. Well fortunately on associates
some things so that we need far less parentheses in practice.

The -> is right associative: i.e., it binds most tightly to the right, so that
fun x ->fun y ->x + y means
fun x ->(fun y ->x + y) and
int ->int ->int means
int ->(int ->int).
On the other hand, procedure application is left associative: i.e., it binds most tightly to the left,
1Currying is named for the logician Haskell Curry, who studied under David Hilbert. Curry is one of very few

mathematicians to be remembered by naming something for both his first (the functional programming language,
Haskell) and last name.

2

CS17 Lecture 23: Currying, Big-O, Records, and BST10:00 AM, Oct 28, 2019

so that
add 17 1 means
(add 17)1.

We can now rewrite our example from above as:

(fun x -> fun y -> fun z -> x + y + z) 1 2 3
=> (fun y -> fun z -> 1 + y + z) 2 3
=> (fun z -> 1 + 2 + z) 3
=> 1 + 2 + 3
=> 6

Much less cluttered!

It turns out that just as Reason will curry our procedure expression for us, it also will curry our
procedure definitions. How convenient! For example, add defined to be our procedure from before,

let add (x : int) (y : int) : int = x + y

is syntactic sugar for

let add : int -> int -> int = fun x -> (fun y -> x + y)

Here are two more examples, where we drop the parentheses for readability.

This definition:

let foo (x : int) (y : int) (z : int) : int = (x + y) * z

is syntactic sugar for this one:

let foo : int -> int -> int -> int =
fun x -> fun y -> fun z -> (x + y) * z

And this definition:

let bar (a : float) (b : float) (c : float) (d : float) : float =
(a -. (b /. c)) ** d

is syntactic sugar for this one:

3

CS17 Lecture 23: Currying, Big-O, Records, and BST10:00 AM, Oct 28, 2019

let bar : float -> float -> float -> float -> float =
fun a -> fun b -> fun c -> fun d -> (a -. (b /. c)) ** d

Since Reason has no notion of a multi-parameter procedure, all multi-parameter procedures are
either curried, or (more rarely) written with a single-parameter procedure that consumes a tuple.

Currying gives Reason a certain theoretical elegance. Whereas other languages have two different
type errors: applying the wrong number of arguments to a function, and applying arguments to
a non-function, Currying means the former becomes the latter. More generally, currying allows
Reason to be a smaller and simpler language than it would be otherwise.

Infix Tricks For every arithmetic infix procedure application in Reason, there is corresponding
prefix procedure application. In particular, for an infix procedure 〈op〉, the corresponding prefix
procedure is spelled (〈op〉). For example, the following two Reason expressions are equivalent:

1 + 17
=> 18

(+) 1 17
=> 18

If an infix operator consumes two arguments, one of type 〈left-type〉 and the other of type 〈right-type〉,
and returns a value of type 〈val-type〉, then the type of that operator is not written as 〈left-type〉 *
〈right-type〉 -> 〈val-type〉; rather, it is written in its curried form as 〈left-type〉 -> 〈right-type〉 ->
〈val-type〉. For example, the type of (+) is int ->int ->int.

Note: You must enter (+) if you want Reason to return the type of +.

The infix form is shorter to type and more closely resembles standard mathematical notation, so it
is used more frequently. The prefix form is useful when you want to apply one procedure to another
(i.e., you want the latter to be an actual argument of the former)—for example, if you wanted to
fold addition across a list of integers you would apply the fold procedure to (+).

Question: Can you use this trick to make :: into a prefix operator?

Answer: No, I’m afraid not. But you can do this: let cons x y = x ::y.

2 Records

ReasonML tuples allow us to combine a group of values of various types into a single entity.
Analogous to Racket structures, ReasonML records enable us to name these values.

�� � � ��� �� ��� Tuples and records are sometimes called and types, or conjunctive types, since values of these
types compound multiple other types.

Here is an example of a record type definition, followed by an annotated instance of that type:

4

CS17 Lecture 23: Currying, Big-O, Records, and BST10:00 AM, Oct 28, 2019

(* Name and nickname database *)
type entry = {
name: string,
nickname: string
};

(* Examples of entry *)
let pp = {name : "Porcellus Smith", nickname: "Porky Pig"};

�� � � ��� �� ��� Although you can select field in a record by name, pattern matching is generally preferred to
selection in ReasonML. Pattern matching is the subject of our next lecture.

It is straightforward to combine record types with variant types. Here is another record type:

(* A point in 2 dimensions is characterized by x and y coordinates *)
type point_2d = {x : int; y : int};

(* Examples of point_2d *)
({x = (-1); y = (-2)} : point_2d)
let origin2 = ({x = 0; y = 0} : point_2d);

And here is a variant type of points in either 2d or 3d space:

(* A point is either a 2d or a 3d point *)
type point =

| Point2d of point_2d
| Point3d of point_3d;

(* Examples of point *)
Point2d origin2;
Point3d origin3;

Typically, in CS 17, it is sufficient to use tuples, rather than records. This is because there are
usually only two or three distinct fields in the data, and what each field represents is usually clear
from context. However, when the size of a tuple is much more than 3, or if it would improve
readability if fields were named, you should consider storing your data as records.

3 Theorems for proving Big-O class

We will now prove some useful theorems that will help you find the Big-O category of your conjectures.

3.1 Basic Theorems

Theorem 1. If f ∈ O(h) and g ∈ O(h), then f + g ∈ O(h)

5

CS17 Lecture 23: Currying, Big-O, Records, and BST10:00 AM, Oct 28, 2019

Let’s try an example again,

For n > 15, assume f(n) ≤ 11× h(n).
For n > 37, assume g(n) ≤ 6× h(n).
Then for n > max(18, 37), (f + g)(n) ≤ 17h(n).
We can observe that here, 17 = 11 + 6 = c1 + c2. We can now write the general proof,

Proof. For n > M1, we have f(n) ≤ c1h(n).
For n > M2, we know that g(n) ≤ c2h(n).
Then, for n > max(M1, M2), we have f(n) ≤ (c1 + c2)h(n).
Hence, f + g ∈ O(h).
To summarize, if [M1, c1] and [M2, c2] show that f ∈ O(h) and g ∈ O(h), then [max(M1, M2), c1 +c2]
shows that f + g ∈ O(h). �

3.2 Bootstrapping lemma

We now use the following lemma, an important result which will be very useful in proving other
interesting Big-O properties.

Theorem 2. Suppose f ∈ O(g) and we define F (n) = nf(n), G(n) = ng(n),
then F ∈ O(G).

Proof. Hint: use the same [M, c] pair!
f ∈ O(g) means for some M and c, we have for n > M ,
f(n) ≤ C × g(n).
n× f(n) ≤ C × n× g(n).
Hence, F (n) ≤ C ×G(n), and our claim is proved. �

Now we can use this lemma to prove other properties:
Let U(n) = 1 for all n.
Let L(n) = n for all n.
Then U ∈ O(L), which we can write as (n 7→ 1) ∈ O(n 7→ n).
Bootstrapping tells us that (n 7→ n) ∈ O(n 7→ n2).
And also that (n 7→ n2) ∈ O(n 7→ n3).
Hence, (n 7→ 1) ∈ O(n 7→ n3).
Continuing this, we see that (n 7→ nk) ∈ O(n 7→ np) for any natural numbers k, p with k ≤ p.

Using the theorem that “If f ∈ O(h) and g ∈ O(h), then f + g ∈ O(h)”, we get,
(n 7→ n2 + n) ∈ O(n 7→ n2), because (n 7→ n2) ∈ O(n 7→ n2) and (n 7→ n) ∈ O(n 7→ n2)
In fact, for any polynomial p of degree k (where k ∈ N) we have that (n 7→ p(n)) ∈ O(n 7→ nk).
Because of this, we seldom say that some procedure runs in O(nN 7→ n2 + 5) time, but instead we
say O(n 7→ n2) time. We will mostly be dealing with polynomials in our analysis, but a function
like 2n is much worse than any of these polynomial functions, and increases in runtime extremely
quickly.

6

CS17 Lecture 23: Currying, Big-O, Records, and BST10:00 AM, Oct 28, 2019

5

3 7

1 4 6 11

3

1 4

6

5 11

7

Figure 1: Two sample binary search trees that store the set {1, 3, 4, 5, 6, 7, 11}

3.3 A generalized bootstrapping lemma

Theorem 3. Suppose f ∈ O(g) and h ∈ Ω(n 7→ 1), which means that h(n) 6= 0 for large enough n,
we have

n 7→ f(n)h(n) ∈)(n 7→ g(n)h(n))

Proof. Hint: use the max of the M values and the c from f ∈ O(g) to prove this result! �

4 Binary Search Trees

A Binary Search Tree (BST) is a special type of binary tree. The data in all of its nodes are
comparable, and as such, the tree is organized to take full advantage of this.

We can use the following definition of binary trees in OCaml:

type 'a btree =
| Leaf
| Node ('a btree, 'a, 'a btree) ;

For example,

Leaf
Node (Leaf, 17, Leaf)
Node (Leaf, 17, Node (Leaf, 18, Leaf))
Node (Node (Leaf, 17, Leaf), 22, Node (Leaf, 18, Leaf))

If a binary tree is a leaf, then it is automatically a BST. If it is a node, then the following left and
right invariants, respectively, must hold:

• Every value in a node’s left subtree must be less than the node’s value; and

• Every value in a node’s right subtree must be greater than the node’s value.

7

CS17 Lecture 23: Currying, Big-O, Records, and BST10:00 AM, Oct 28, 2019

5 Depth of Binary Trees

Informally, the depth of a binary tree is the number of steps needed to get to the bottom of the tree.
Now let’s consider, for a binary tree with n nodes, what could be the largest possible depth?

Take the example of a tree with 5 nodes. Such a tree would look like:

node1

node2

node3

node4

node5

leaf

leaf

leaf

leaf

leaf leaf

Thus the largest depth a binary tree with 5 nodes can have is 5.

Now consider, what could be the least possible depth of a bianry tree with n nodes? The shallowest
tree with 5 nodes would look like:

node1

node2 node3

node4 node5 leaf leaf

leaf leaf leaf leaf

This tree has depth 3. It is not possible to have a binary tree of 5 nodes with only depth 2 becuase
there would only be room for 3 nodes.

Now, if a binary tree has depth k, what’s the largest number of nodes it can have? Below is a table
with the number of nodes for values of k from 0 to 6:

8

CS17 Lecture 23: Currying, Big-O, Records, and BST10:00 AM, Oct 28, 2019

k nodes
0 0
1 1
2 3
3 7
4 15
5 31
6 63

We can think of the number of nodes in a tree as being the root, plus number of nodes in the left
subtree, plus the number in the right subtree. The left and right subtrees are equivalent to a tree
with depth 1 lesser than our tree, and have the same number of nodes.

root

L R

L L R R

So, let Q(k) be the largest number of nodes in a tree of depth k.
We have,
Q(0) = 0
Q(k) = 1 + 2Q(k − 1), becuase in a depth k tree, the left and right subtrees can each contain at
most Q(k − 1) nodes, and their parent (the root) accouts for one more.

We can now use plug and chug on this recursive formula we have for largest number of nodes (like
the table above) to get Q(k) ≤ 2k − 1.

Our next question is, if we want to put n nodes in a tree, how deep must it be?
Well, we can put n−1

2 nodes in each subtree.
So D(n), the maximum depth of an n node tree satisfies D(n) ≥ D(n−1

2 + 1)

This is basically asking the question: how many times do I need to divide n by 2 till I get to a
number less than or equal to 1?
This is (informally) the definition of log2(n)! Or rather, dlog2(n)e, since we are taking the ceiling of
this number. More formally, a mathematical definition of log would be

log2(n) = x if 2x = n

However, for us, the intuitive understanding that the number of times you need to divide a number
by 2 to reach 1 is log2(n) is very effective in helping us analyze procedures!

9

CS17 Lecture 23: Currying, Big-O, Records, and BST10:00 AM, Oct 28, 2019

Please let us know if you find any mistakes, inconsistencies, or confusing language in this or
any other CS 17 document by filling out the anonymous feedback form: http://cs.brown.edu/
courses/csci0170/feedback.

10

 http://cs.brown.edu/courses/csci0170/feedback
 http://cs.brown.edu/courses/csci0170/feedback

