
HEAP HELP SESSION

HEAP HELP SESSION | CS16 - Summer 2021

OVERVIEW

● Java Generics
● Comparators
● Project Structure

○ NDS4
● Exceptions
● Junit Testing

1HEAP HELP SESSION | CS16

JAVA GENERICS

HEAP HELP SESSION | CS16

You may have noticed syntax like ‘Position<E>’ and ‘MyHeapEntry<K, V>’ in the
stencil and wondered what the E, K and V are …

These are called generic types, and are essentially placeholders for some actual Java
object (like a String, or an Integer) that a Position or heap Entry would
hold.

E, K and V are three of the most conventional type parameter names. They represent
the following: Element, Key, and Value.

2

WHY GENERICS?
They make your classes more flexible because you can reuse the class to store different

type objects.

Imagine if the Java makers implemented an ArrayList that can only hold Strings:

3HEAP HELP SESSION | CS16

public class ArrayList {

public ArrayList {

// constructor

}

public String add(String s) {

// some code to add string to list

}

}

Now we have an ArrayList whose add() method can only take in a String object.

But what if I wanted a list of Integers? Booleans? Boxes? Tetris pieces?

We’d have to write a new class ArrayList whose add() method would take in that
type of object.

So one solution is defining the add() method as:

 public Object add(Object obj) {
// code to add object to the list

 }

Since we know that Object is a superclass of every Java class, we can now add any
type to our list.

Do you foresee any problems with this?

WHAT ABOUT THINGS BESIDES STRINGS?

4HEAP HELP SESSION | CS16

Here’s an example of our ‘extensible’ ArrayList:

ArrayList a = new ArrayList();

a.add(“hello”);

a.add(9578);

a.add(new ArrayList());

a.add(new Comparator());

a.add(3.1459);

Now do you see a problem?

If you wanted a list of just one specific type, this polymorphic implementation has no
way of enforcing that type-checking. Which is why we use …generics!

WHAT ABOUT THINGS BESIDES STRINGS?

5HEAP HELP SESSION | CS16

SOLUTION WITH GENERICS!
public class ArrayList<E> {

 public ArrayList() {

// constructor code

 }

 public E add(E element) {

// code to add element to list

}

}

6HEAP HELP SESSION | CS16

Now how can we use this list? Say I wanted a list of ints, I can use this list:

ArrayList<Integer> a = new ArrayList<>();

a.add(1);

a.add(2);

a.add(99999);

But what if I now did a.add(“hello”)?

The compiler would complain because my list was instantiated to only hold ints.

Now we have an extensible list implementation that can hold any object type, but we
limited that extensibility to creation time, so we can enforce type checking on
one instance of the list.

SOLUTION WITH GENERICS!

7HEAP HELP SESSION | CS16

SUMMARY OF GENERICS
Remember to implement classes and methods with generic types.

public class MyClass<E> {

public MyClass() {

//Constructor

}

}

But instantiate them and call methods on specific types.

 MyClass<String> theBestObject = new MyClass<>();

Hooray for generics!

8HEAP HELP SESSION | CS16

COMPARATORS
In the handout, you are told to use a Comparator to compare the values in the

heap.

….so what is a Comparator?

It defines and enforces an ordering of things that don’t have an intuitive ordering
(like Integers do).

So you could order Strings using a Comparator.

A Comparator is passed into an instance of MyHeap through the constructor.

9HEAP HELP SESSION | CS16

HOW DO I USE A COMPARATOR?
Comparator is an interface

Aside: What is an interface?

That means every Comparator has the following method:
//Input: Two objects to compare to each other

//Output: A negative int if o1 < o2

 Zero if o1 = o2

 A positive int if o1 > o2

public int compare(Object o1, Object o2) {}

The Comparator defines what it means to be <, =, and > something

10HEAP HELP SESSION | CS16

LET’S GET TO HEAP

2, C

7, T 3, H

9, P 8, M 4, L

What is it?
● Minimum key on top
● Binary structure
● Left complete

11HEAP HELP SESSION | CS16

HOW DO WE MAKE IT?

A binary tree!
LinkedBinaryTree<E>

Made up of Position<E>

These are Positions
- Make up the structure of the tree
- But Position is an interface…
- If the number of nodes in my

tree changes, I need to
add/remove these

12HEAP HELP SESSION | CS16

BUT THAT’S NOT A HEAP YET…

A heap has key/value pairs
Entry<K, V>

These are Entrys

- Maintain the data of the tree
- If I want to organize the tree,

or add/remove data from the

tree, I have to deal with these
- But Entry is an interface…

2, C

7, T 3, H

9, P 4, L

K, V

8, M

13HEAP HELP SESSION | CS16

WHAT DO I HAVE TO WRITE?
MyHeap<K, V>

//next page

MyLinkedHeapTree<E>
- Extends NDS4 LinkedBinaryTree<E>
- The skeleton of your heap
- Where you want to deal with constant time adding/removing nodes from the

structure of the tree
- Your Deque (we’ll talk about this in section next week!)

MyHeapEntry<K, V>
-Implements NDS4 Entry<K, V>
-Stores its key and value… anything else?

14HEAP HELP SESSION | CS16

NDS4!
What is it?

- Your for CS16 Java projects!

- "net.datastructures”
- A bunch of helpful classes, interfaces, and libraries to help you succeed

in all of your endeavors

15HEAP HELP SESSION | CS16

NDS4 FOR HEAP!
Let’s say I want to use a Deque

Wait! It’s an interface?
I can’t make one of
those…

Never Fear! “All Known
Implementing Classes”
is here!

16HEAP HELP SESSION | CS16

NDS4 FOR HEAP!

LinkedBinaryTree<E> -- class

Position<E> -- interface
- Hint: What kind of Positions does LinkedBinaryTree use?

Entry<K, V> - interface

Deque<E> - interface

17HEAP HELP SESSION | CS16

EXCEPTIONS!
Throughout the project, it is your job to handle what can

go wrong and handle the cases appropriately.

This can take a few forms, but the main cases are raising
and catching exceptions.

Note that we mention in the handout and stencil when we require
you to handle exceptions

18HEAP HELP SESSION | CS16

EXCEPTIONS - RAISING VS. CATCHING

Raising (aka throwing)

You want to raise an exception when you
are within a method and know
something can go wrong. The exception
notifies the calling method that an error
occurred.

Example: Getting the min of an empty
priority queue

Catching

You want to catch an exception when
you are calling a method that raises an
exception, and you want to intercept
that error and act appropriately.

Example: A user-controlled system that
reports the value of a priority queue,
and the queue itself is empty

19HEAP HELP SESSION | CS16

RAISING EXCEPTIONS- SYNTAX
public class PriorityQueue<K,V>{

private V _min;

//other methods elided

//assumes somewhere we have a definition of EmptyQueueException

public V min(){

if (this.isEmpty()){

throw new EmptyQueueException(“Can’t get the min of an empty
PQ!”);

}

return _min;

}

}

*No need for else case here, since exceptions stop the running of the method.

20HEAP HELP SESSION | CS16

CATCHING EXCEPTIONS – SYNTAX
public class QueueReporter{

private PriorityQueue<int, String> _pq;

//other methods elided

public void reportMin() {
try {

System.out.println(“The current min is ” + _pq.min();
} catch(EmptyQueueException e) {

System.out.println(“The queue is currently empty.”);
}

}

}

21HEAP HELP SESSION | CS16

• If you care about the details of the exception beyond type, that info is contained in the variable e

• This is just an example to show the syntax. In this case, it might just be smarter to check the size of PQ

EXCEPTIONS - NOTES
You can have multiple catch blocks to handle different exceptions.

▪ The syntax is what you might expect:

public void someMethod() {
try {

 //some code
} catch(ExceptionType1 e1) {

System.out.println(“12345”);
 } catch(ExceptionType2 e2) {

 System.out.println(“ABCDE”);
 }

}

22HEAP HELP SESSION | CS16

This code prints 12345 if the code in the try block throws an error of type
ExceptionType1 and ABCDE if the exception is of type ExceptionType2

EXCEPTIONS – NOTES (2)
Since all exceptions are subclasses of Exception, putting Exception as the type in the catch

block will catch any exception
▪ In general this is not a good idea. You generally don’t want to just accept that something failed

and sweep it under the rug, you want to do something with the error!

public void verySensitiveMethod(){
Person recipient = this.getNemesis(); // just a placeholder, going to change
try{

this.replaceWithActualRecipient(recipient); // can fail to reset
} catch(Exception e) {

System.out.println(“Uh oh!”);
}

this.sendLotsOfMoney(recipient);
}

23HEAP HELP SESSION | CS16

If you know the type of exception, you may know whether it is ok to proceed with sending the money.

EXCEPTIONS – NOTES (3)
In addition to try and catch, there is also a very important third kind of block, the
finally block

• Just like the name says, it should happen after everything else. In fact, it happens whether or not the
exception was caught. It always happens when a try block exits.

public void fileIOMethod(){
 try {

//error-prone file operations
} catch(IOException e) {

//notify user that something went wrong
} finally {

//close up files and other resources
 }

}

• This way, the resources are closed up even if the exception is not an IOException
• However, if it is an IOException, perhaps we can handle it better

24HEAP HELP SESSION | CS16

JUNIT TESTING!

• The reason for JUnit testing is to test individual parts of your program,
ensuring that each component functions correctly.

• This is extremely useful, because as the size of projects grows – the more
impact it has – the more time needs to be spent testing, as even small
failures can be problematic!

• We’ve provided you with a JUnit Test file with some example tests. You
are required to add you own tests in order to fully cover your code!

• It is convention to name the test file <name of class>Test.java

25HEAP HELP SESSION | CS16

JUNIT TESTING (2)

Don’t forget to include this tag!

26HEAP HELP SESSION | CS16

JUNIT TESTING (3)

Use this format to test throwing exceptions!

27HEAP HELP SESSION | CS16

YOU CAN DO IT!

(BUILD SOMETHING OUT OF THIS WORLD!)

28HEAP HELP SESSION | CS16

