
CS 16
Project 3: Decision Tree

Intro to Algorithms and Data Structures
Tuesday, July 20, 11:59 PM

Project 3

Decision Tree
Out: Friday, July 9

In: Tuesday, July 20, 11:59 PM
“If a decision tree falls in a forest, and no one is there to hear it, is the

classification correct?”
-Emily Magavern

1 Installing, Handing In, Demos

1. Click here to get the stencil code from GitHub (refer to the CS16 GitHub Guide
for help with GitHub and GitHub Classroom). Navigate to your repository, click
on the green Code button, and copy the project url. Then, go to your terminal in
IntelliJ, cd to the src inside your cs16 folder, and use the command:

git clone <project url>

Once you’ve cloned your personal repository from GitHub, you’ll need to rename
the folder from decisiontree− <yourGitHubLogin> to just decisiontree (very
important for anonymous grading). You will have issues running your code until you
make the change.

2. To hand in your project, upload your code to the Gradescope assignment through the
GitHub option (GradeScope Guide). Make sure your submit the code portion to
the DecisionTree assignment and the written problems to the DecisionTree
Reflection assignment. Remember that unlike for the homeworks, you will not be
evaluating your testing suite using Gradescope.

3. To run the demo, go to this Google Drive folder and download either the pkg (for
MacOS users) or exe (for Windows users) file. For Mac users, if you get an error
saying you cannot download from unidentified developer, go to System Preferences >
Privacy & Security > General > Open anyway.

2 Using IntelliJ

If you do not already have IntelliJ set up for CS16, follow the instructions here. Please
post on Ed or come to hours if you have any questions!

3 Introduction

Please read the entire handout carefully before you begin - it is full of important
information!

Decision Tree Tuesday, July 20, 11:59 PM 1

https://classroom.github.com/a/cdrOJIpb
https://docs.google.com/document/d/1x4-iYjHz1dZcI77QZ2E2NzEBPUgEWj7hRq2shDczX5s/edit
https://docs.google.com/document/d/1ily-aLD0CXMjlsyghWv0QstQrh5kC-oXfj9ohdEnmrY/edit?usp=sharing
https://drive.google.com/drive/folders/15kzb459c7g0WtFf8J7fdqoqGTd0SIoCP?usp=sharing
https://docs.google.com/document/d/1dJhjoXFwemsXW-Uvt4K-2UMOrCG5rfqbTaLuiRsxOHk/edit

CS 16
Project 3: Decision Tree

Intro to Algorithms and Data Structures
Tuesday, July 20, 11:59 PM

3.1 Your Task

In this project, you will implement the ID3 algorithm and use it to generate a decision tree
from a dataset. We’ve provided a stencil for the MyID3.java class. You’ll need to do the
following:

• Fill in the id3Trigger method in MyID3.java. This method is called when you click
‘Train’ in the visualizer. It takes in the data you’ll be using to train your tree and it
should build your tree and return the root. See the Javadocs to understand the data
object you are given as a parameter. You are required to implement the algorithm
recursively.

• Factor out your code into helper methods that you can test - we will be grading
your algorithm design, and we expect frequent use of helper methods. Do your best
to avoid repeated code.

• Test your program! You will do this by using the visualizer to see how your tree
performs with testing data. You will also create your own testing suite by writing
JUnit tests. See section 7 for more details.

3.2 README

You’re required to hand in a README text file (which must be named README.txt)
that documents any notable design choices or known bugs in your program. Remember
that clear, detailed, and concise READMEs make your TAs happier when it counts (right
before grading your project). Your README should be saved in the same directory as your
Java files. Please refer to the README Guide in the Docs section of the CS16 Website
(link).

4 Decision Trees

Decision trees are one of the most common and successful kinds of ML models. A decision
tree represents a function that takes as input a set of attribute values describing something
and returns a classification.

But before we can use a decision tree to classify things, we must first build it! And we
do this by “learning” the decision tree using training data. Training data is a collection
of examples for which the classification is already known. Once a decision tree is “learned”,
it can be used to compute the classification of new examples that it has not seen before
(i.e., that were not part of the training data). In this project, we will work with examples
that can only have one of two classifications.

Decision Tree Tuesday, July 20, 11:59 PM 2

http://cs.brown.edu/courses/csci0160/static/files/docs/doc/decisiontree/index.html
http://cs.brown.edu/courses/csci0160/static/files/docs/ReadmeGuide.pdf
http://cs.brown.edu/courses/csci0160/static/files/docs/ReadmeGuide.pdf

CS 16
Project 3: Decision Tree

Intro to Algorithms and Data Structures
Tuesday, July 20, 11:59 PM

5 Vocabulary

These are terms you’ll see throughout this handout. Here are some basic definitions; feel
free to refer back to this section if needed!

• Attribute: A quality that is recorded about every example and is used to predict an
example’s classification.

• Example: A particular “datum” from the data set. That is, a set of values for each
of the data set’s attributes, and a positive or negative classification. In the scenario
from lecture, an example represents one individual’s choice to wait for a table at the
restaurant depending on the value of certain attributes (was it raining, how full the
restaurant was, etc.) at that moment.

• Value: A value that an attribute can have. Every example has one value for each
attribute. The values for the attribute “Price” are {“$”, “$$”, “$$$”}.

• Classification: The ultimate “decision” made for each example. Can be any pair of
strings, such as ”Yes” and ”No” or ”2000’s” and ”90’s”.

• Entropy: A quantification of the homogeneity of a set.

• Remainder: The amount of entropy remaining in the data after “splitting” on some
attribute.

• Information Gain: The amount by which entropy is reduced upon “splitting” on some
attribute.

• Importance: An attribute’s importance is measured by the amount of information
gained by splitting on it. The most important attribute has the highest gain.

• Training Data: A subset of a data set used to create the decision tree.

• Testing Data: A subset of the data set, distinct from the training data, that is run on
the tree (created with the training data) to test it. For each example, the classification
the tree predicts for it is compared to the actual classification in order to measure
accuracy.

• Splitting on an attribute: partitioning a set of examples according to the values they
take on the attribute. The number of subsets in the partition will equal the number
of values the attribute can take.

6 Training Data

The training data is a collection of examples, where each example is described using a set
of attributes and a classification. Each attribute will be one of a set of values and the

Decision Tree Tuesday, July 20, 11:59 PM 3

CS 16
Project 3: Decision Tree

Intro to Algorithms and Data Structures
Tuesday, July 20, 11:59 PM

classification is one of two possible outcomes. In our restaurant scenario from lecture, every
example is described using the following attributes (with their possible values):

1. Location: {local, nonlocal, international}: whether the person is located near the
company, out-of-state, or out of the country.

2. Degree: {none, BA/BS, MS, PhD}: education level.

3. Technical internships: {0, 1, 2, 3+}: number of technical internships completed.

4. Nontechnical experiences: {0, 1, 2, 3+}: number of job experiences unrelated to tech.

5. Big tech experience: {Y, N}: whether the person has worked at a large prestigious
tech company.

6. Programming languages: {0, 1-2, 3-4, 5+}: number of programming languages the
person has experience with.

7. School type: {public, private}: category of school.

8. School size: {small, medium, large}: size of school.

9. Major : {CS, CS-related, unrelated}: category of major.

10. GPA: {< 2, 2.0-3.0, 3.0-3.5, 3.5-4.0}
11. Research experience: {Y, N}: whether the person has had research experience.

12. WiCS : {Y, N}:

In this scenario, there are two possible classifications: Yes and No. This means a
person can decide to either wait for a table or not. Note that the examples in the training
data can then be partitioned into two different groups according to their classification: the
examples with classification Yes and the examples with classification No. We will refer to the
examples with Yes classification as positive examples and to the ones with No classification
as negative examples. That is, a person that decides to patron the restaurant represents a
positive example whereas one that does not is a negative example.

Figure 1, seen in lecture, is an example of a training dataset.

Note on positive/negative. Not all datasets have classification {Yes, No}. For some
datasets the classification may be {true, false}, {0, 1}, {high, low}, {2000’s, 90’s} or any
other set of two values. In the formulas we describe below we use the terms positive and
negative but the “meaning” of positive and negative is completely arbitrary. In other words,
in the restaurant example, it does not matter whether positive represents Yes and negative
represents No or vice versa. Similarly, in the 2000’s/90’s scenario, it does not matter
whether positive represents 2000’s and negative represents 90’s or vice versa.

Decision Tree Tuesday, July 20, 11:59 PM 4

CS 16
Project 3: Decision Tree

Intro to Algorithms and Data Structures
Tuesday, July 20, 11:59 PM

Ex.
Input Attributes

Classif.
Alt Bar Fri Hun Pat Price Rain Res Type Est

1 Yes No No Yes Some $$$ No Yes French 0-10 true
2 Yes No No Yes Full $ No No Thai 30-60 false
3 No Yes No No Some $ No No Burger 0-10 true
4 Yes No Yes Yes Full $ Yes No Thai 10-30 true
5 Yes No Yes No Full $$$ No Yes French >60 false
6 No Yes No Yes Some $$ Yes Yes Italian 0-10 true
7 No Yes No No None $ Yes No Burger 0-10 false
8 No No No Yes Some $$ Yes Yes Thai 0-10 true
9 No Yes Yes No Full $ Yes No Burger >60 false
10 Yes Yes Yes Yes Full $$$ No Yes Italian 10-30 false
11 No No No No None $ No No Thai 0-10 false
12 Yes Yes Yes Yes Full $ No No Burger 30-60 true

Figure 1: Training data

7 The ID3 Algorithm

You will be implementing the ID3 algorithm to create a decision tree. At a high level, the
algorithm creates a tree with attribute names as internal nodes, attribute values on the
tree’s branches, and leaves with classifications. Run the demo to see what this looks like!

Our goal is to create a tree that is: (1) consistent with the examples in the training
data; (2) as small as possible; and (3) does well on examples it has not previously seen.
The ID3 algorithm uses a greedy divide-and-conquer strategy to decide which attribute (or
classification) should be assigned to a node (or leaf). At each internal node, it does this
by choosing the attribute with the most “importance” which, intuitively, means that the
attribute creates a “split” of the training examples that is as homogeneous as possible.

Let’s go through an example using the training data above. We will refer to the set of
examples in the training data as E. Now suppose the algorithm wanted to determine the
importance of the attribute “Pat” with respect to the examples in E. The Pat attribute
has three values: None, Some and Full. We can use these values to split the examples in E
into three subsets: a None subset SN ⊆ E that includes the examples with Pat=None, a
Some subset SS ⊆ E that includes the examples with Pat=Some and a Full subset SF ⊆ E
that includes the examples with Pat=Full. Now, within each of these subsets, we can count
the number of positive examples and the number of negative examples. Intuitively, we will
consider an attribute “important” if it leads to subsets that are homogeneous in the sense
that they are either all positive or all negative.

So let’s see how the Pat attribute splits the training data. If we consider the None
subset SN = {7, 11} (here the numbers refer to the examples), we can see that it includes
all negative examples. If we look at the Some subset SS = {1, 3, 6, 8} we can see that it

Decision Tree Tuesday, July 20, 11:59 PM 5

CS 16
Project 3: Decision Tree

Intro to Algorithms and Data Structures
Tuesday, July 20, 11:59 PM

includes all positive examples. Finally, if we look at the Full subset SF = {2, 4, 5, 9, 10, 12}
we can see that it includes two positive examples (4 and 12) and four negative examples
(2, 5, 9 and 10).

What is all this telling us? We can interpret the fact that the None subset SN is
homogeneous as the training data telling us that it is a safe bet to classify examples with
Pat=None as negative. Similarly, we can interpret the fact that the Some subset SS is
homogeneous as the training data telling us that it is a safe bet to classify examples with
Pat=Some as positive. But what can we say about the Full subset SF since it is not
homogeneous? Well, we can interpret its heterogeneity as the training data telling us
that there is no safe bet and we should consider another attribute on that subset to see
if we can find a good split for it. In other words, we should recur. For this reason, your
implementation MUST be recursive. See the lecture slides for the pseudocode of ID3.

There are four cases to consider for each recursive problem:

1. The set of examples on which you recurred is empty: No example has been found with
this particular combination of values (although the combination is possible). In this
case, return the majority classification (more frequent classification) of the parent’s
set of examples. This is the reason we also pass the parent examples parameter to
the algorithm.

2. The set of examples on which you recurred is all positive or all negative: We’re done,
and we add a leaf with the corresponding classification.

3. There are no attributes left but there are still positive and negative examples: This
means that there are examples with this combination of attribute values, but they
resulted in different classifications. This means that there is an error or noise in the
data, meaning that we can’t algorithmically interpret the data based on the values.
When this happens, we just return the majority classification of the examples we
have.

4. The set of examples on which you recurred includes some positive and some negative
examples: Choose the most important attribute (see section below), split the examples
using this attribute, recur on each subset created, associate the attribute to a new
node N , attach this node to the nodes and/or leaves returned by the recursive calls,
and return the node N .

Note: When finding the majority classification, you can break ties however you choose.
The demo picks the negative classification when there is a tie, but you are allowed to choose
the positive or decide randomly. This will likely impact your accuracy on the short data
set, because it is so small (see section 7), and your tree may differ from the demo on one
leaf node.

Essentially, the most important attribute is chosen based on the current examples. That
attribute becomes the current node. Then, each of the possible values for that attribute

Decision Tree Tuesday, July 20, 11:59 PM 6

CS 16
Project 3: Decision Tree

Intro to Algorithms and Data Structures
Tuesday, July 20, 11:59 PM

(for Pat, these would be None, Some, and Full) become branches from that node. Then,
the algorithm recurs to create nodes for these branches, except this time only taking in the
examples that had that branch’s value. This recurrence happens until we reach one of the
base cases that creates a leaf.

7.1 Information Gain, Remainder & Entropy

Determining which attribute is the “most important” is tricky. Formally, attribute impor-
tance is determined by how well its values split the data. An attribute with maximum
importance would split the examples (as described above) into subsets that are homoge-
neous, i.e., such that each subset contains only positive or only negative examples. If this
is the case, then we can create branches from a node with this attribute to leaves with
a classification (since all the examples with that particular value have a classification).
An attribute with low importance would split the examples into subsets that all had the
same number of negative and positive examples. The importance of an attribute will be
quantified using the notion of information gain. But before we can describe what the
information gain is, we first have to describe the notions of entropy and of remainder.

Entropy. The homogeneity of a subset of examples can be quantified with the notion of
entropy.1 Entropy is measured as a value from 0 to 1. A high amount of entropy (i.e., closer
to 1) will correspond to a low amount of homogeneity (or a high amount of heterogeneity).
A low amount of entropy (i.e., closer to 0) will correspond to a high amount of homogeneity
(or low amount of heterogeneity).

For any subset of examples S ⊆ E, let’s call its ratio of positive to negative examples
q, the number of positive examples p and the number of negative examples n. 2 Then q is
defined as:

q =
p

p + n

The entropy (denoted H) of S is then defined as:

H(S) = −
(
q · log2 q + (1− q) · log2 (1− q)

)
.

Important note: Normally, log2 0 = −∞ but the ID3 algorithm uses log2 0 = 0 in its
calculations! So you MUST treat log2 0 as 0 in your entropy calculations.

1Entropy is a concept originally from Physics that was adapted by Claude Shannon to quantify the
amount of information in a process. Here it is used to quantify homogeneity but we could also interpret
homogeneity as information.

2Remember that it doesn’t matter which of the two classifications is called positive and which is called
negative. These are simply ways to distinguish between one classification and the other. Therefore, in your
code it is OK to arbitrarily choose one classification as positive and the other as negative.

Decision Tree Tuesday, July 20, 11:59 PM 7

CS 16
Project 3: Decision Tree

Intro to Algorithms and Data Structures
Tuesday, July 20, 11:59 PM

Remainder. Now that we know how to calculate the entropy of a set of examples, we
can calculate the remainder and the information gain of an attribute. The remainder of
an attribute with respect to a set of examples E is computed by first using the attribute
to split the set of examples E into distinct subsets of examples, where each subset has a
particular value for that attribute. The remainder is then a weighted sum of the entropies
of the subsets; where a subset’s weight is its proportion (in size) with respect to the total
set of examples. More precisely, for some attribute Att that can take on d possible values
and that creates a split that includes the subset of examples S1 ⊆ E through Sd ⊆ E, the
remainder of Att is:

R(Att) =
d∑

i=1

|Si|
|E|
·H(Si),

where |Si| and |E| are the sizes of the sets Si and E, respectively. Let’s see an example.
Suppose the attribute we are considering is the Pat attribute. Then, as above, the split is
SN = {7, 11}, SS = {1, 3, 6, 8} and SF = {2, 4, 5, 9, 10, 12}. The remainder of Pat would
then be

R(Pat) =
1

6
·H(SN) +

1

3
·H(SS) +

1

2
·H(SF)

Information gain. We are now ready to see how to compute the information gain of an
attribute. As mentioned above, the information gain is how we quantify the importance of
an attribute. The information gain of an attribute Att with respect to a set of examples E
is the difference between the entropy of E and the remainder of Att. More precisely, it is
defined as

Gain(Att) = H(E)−R(Att).

As mentioned above, an attribute’ s importance is measured by its information gain. So in
the ID3 algorithm, when we need to choose an attribute for a particular node we compute
the information gain of all the attributes and choose the one with the highest information
gain. We then store it in the current node, split the examples using the attribute, and recur
on each of the subsets generated by the split (in the recursive calls we omit the current
attribute since we’ve already used it).

8 On Training and Testing Data

Generally, when you create a machine learning model (in this case a decision tree) you use
your training data to train the model (i.e., to create the decision tree) and also to test it. It
is crucial, however, that you not use the same parts of your dataset to train and test. The
data must be split into two non-overlapping parts: one for training and one for testing.

The training data is the data you will use to build and train your tree. This is the data
that your tree will “learn” from. Given these training examples, your tree will learn how
to classify examples.

Decision Tree Tuesday, July 20, 11:59 PM 8

CS 16
Project 3: Decision Tree

Intro to Algorithms and Data Structures
Tuesday, July 20, 11:59 PM

Once you have trained your tree, you will want to test to make sure it is able to make
accurate classifications on new examples (i.e., examples that it has never seen during train-
ing). This is where the testing dataset comes in. Your testing data will contain examples
that were not a part of your training data and can be used to check the accuracy of your
tree and how well your tree behaves when it encounters examples it has not seen before.

When you run your program, click ‘Train’ to train the tree on a dataset, and ‘Test’ to
test it. You’ll be prompted to pick a data file for each. Use the data in:

decisiontree-data.

The visualizer will show you the tree your algorithm produces and give you feedback on
what percent of the new examples it classifies correctly.

We’ve provided four data sets for you: short-data, which is our restaurant example from
lecture; villain, which is medium-sized (around 200 examples); resume, and mushrooms,
which has several thousand examples and will produce a more complex tree. The decision
being made for the resume dataset is whether a given person should be hired. The decision
being made for the villain dataset is whether a given person is a hero or a villain based on
their opinions on food options at Brown; for mushrooms it is whether a mushroom is edible
or poisonous based on physical characteristics. We recommend getting your tree producing
correct results (i.e., matching the demo) for short-data before moving on to other datasets.

For the resume dataset, there are two files: training and testing. Note: It is OK to
get a relatively low accuracy value on the resume dataset, especially given the smaller size
of this dataset! Our solution receives an accuracy value around 64 percent.

For the other datasets, there are three files: full, training, and testing. full is all
of the data we have. training contains a subset of full (about 3/4 of it). testing con-
tains the other 1/4. The standard practice is to train on training and test on testing,
of course, but we encourage you to try other combinations and compare them to the demo
to see how your tree does. For example, when trained on full and tested on either subset,
your tree should be 100 percent accurate.

8.1 Testing Data and Grading

You should be using the demo as a benchmark to determine what accuracy percentage your
tree should achieve and what your trees should look like. Note that an accuracy percentage
that is near what the demo gets does not mean your algorithm is correct, and if your tree
looks different from the demo, it’s probably an indication of a bug. If your tree gets the
same or nearly the same accuracy at the demo, but is larger (splits more times), it is incor-
rect, because the optimal decision tree is the smallest possible tree that makes the correct

Decision Tree Tuesday, July 20, 11:59 PM 9

CS 16
Project 3: Decision Tree

Intro to Algorithms and Data Structures
Tuesday, July 20, 11:59 PM

decision.

Your grade will be based on a combination of your accuracy percentages, whether the
trees you produce match the demo, how correct your code is, and code factoring, design,
and style.

8.2 Testing data vs. JUnit testing

In short, testing data is a set of data that you can use to test the overall accuracy of your
tree once you have created it using the training data. Testing data contains data points or
“situations” that are not included in your training data so that you can see how well your
tree behaves in situations that it has not been trained on. Once you are finished creating
your tree, you can use the visualizer to see how well it performs with the testing data.

JUnit testing on the other hand, is probably something that you are more familiar with
after Heap. JUnit tests should be used to check that each individual part of your program
is working as it should. While you are coding, you can (and should!) factor out your code
into helper methods so that each of these can be tested in your JUnit tests. We recommend
that you do JUnit testing on your helper methods as you code them so that you’re sure
they work before using them in other parts of your algorithm.

In general, you should make use of the testing data to test the overall accuracy of your
tree once it has been created and write JUnit tests to check that the smaller components
of your program (your helper methods) are working as they should.

9 Important Notes and Reminders

• Your implementation MUST be recursive.

• The ID3 algorithm treats log2 0 as 0 not as −∞ (or in Java, not a number: NaN).
When calculating entropy, you must have a case that hard-codes log2 0 to result in 0.

• You will be doing string comparisons to find the names of values, attributes and
classifications. Strings in Java are objects, not primitive types like integers, chars, or
booleans. That means that every string is a distinct instance of String. Comparing
two strings to see if they have the same value like “Foo” == “Foo” will never result in
true since Java sees them as distinct objects (Unless you are comparing the same string
instance to itself). The correct way to compare strings in Java is “Foo”.equals(“Foo”),
which compares the actual values of the string. Make sure to be aware of this since
it is a tricky bug!

• Beware of floating point arithmetic. In integer division, all values greater than 0
and less than 1 will be truncated to 0. Make sure you do not truncate these values

Decision Tree Tuesday, July 20, 11:59 PM 10

CS 16
Project 3: Decision Tree

Intro to Algorithms and Data Structures
Tuesday, July 20, 11:59 PM

when you don’t want to. One way to prevent problems might be to store variables as
doubles, evening if they’re keeping track of an integer value such as a count, so that
they do not get truncated when you divide. Looking for this is a good place to start
debugging!

• Beware of NaN, meaning Not a Number. In particular, be aware that if you divide by
the double 0.0, Java will not throw an exception, as it would with integers, but the
computation’s result will be NaN. This bug will produce incorrect trees that do not
match the demo. Watch out for this in your remainder and entropy calculations; you
need to account for it in the case where the number of examples with a particular
value for an attribute is 0.

• Factoring your code effectively and creating helper methods is a crucial part of this
project, and will be a part of your grade. Before you start coding, consider the
algorithm and the math that goes behind it from a high level and think about what
helper methods you should make. You should aim to have as little repeated code as
possible in your algorithm. This will make your program much easier to debug and
is good design!

• To implement some of the formulas used for finding attribute importance, we recom-
mend you use the Java Math package (link).

10 Support Code

We have provided support code for this project in the form of a tree visualizer and a number
of classes that you will need to understand and use when writing your algorithm. Refer to
the Javadocs (link) for more information. Understanding the format in which the data is
given to you is crucial.

11 Written Questions

Social Premise

Hiring managers at tech companies are tasked with deciding who gets interviewed from
a pool of software engineering applicants. In order to make this decision faster and easier,
they might create a decision tree. They could have a training dataset with attributes and
values for 150 candidates the company has either hired or rejected in the past. The testing
set contains information about 50 applicants with no classifications.

Assume that people working in a company’s HR department created a dataset by going
through a random sample of 150 resumes from past hires and rejected applicants. This
group of people manually chose the attributes (and values for each attribute) in order to
create a dataset that would be used to learn an algorithm for screening future applicants

Decision Tree Tuesday, July 20, 11:59 PM 11

https://docs.oracle.com/javase/7/docs/api/java/lang/Math.html
http://cs.brown.edu/courses/cs016/static/files/docs/doc/decisiontree/index.html

CS 16
Project 3: Decision Tree

Intro to Algorithms and Data Structures
Tuesday, July 20, 11:59 PM

in a way that is consistent with how the company has made past hiring decisions.

In a separate document, please answer these questions thoroughly. Each answer should
contain 2-4 sentences and will be graded on thoughtfulness.

1. Before you begin coding, look at the resume dataset’s attributes and values. What do
you observe? If you were to create a dataset of software engineer applicants, would
you choose the same attributes and values? Why or why not?

2. After writing your algorithm and training and testing it on short-data and mush-
room, train your algorithm on resume-training. What do you observe in the resulting
decision tree?

3. After running your ID3 algorithm on resume-testing, how do the resulting classifica-
tions compare to the training data? Are there biases present?

4. Why do you think you got the results you did? Where might the biases in the results
come from? What can be done to reduce these biases?

5. Do you believe that this decision process should be automated? If yes, why and to
what degree? If not, why not?

12 What to Hand In

1. A filled in and commented MyID3 and MyID3Test class and the unchanged App and
TestRunner.java classes.

2. Any additional classes you may have written.

3. A README named README.txt (see the README Guide for help).

13 Sources

1. Russell, Stuart J, and Peter Norvig. Artificial Intelligence: A Modern Approach. 3rd
ed., Pearson Education, Inc., 2010.

Decision Tree Tuesday, July 20, 11:59 PM 12

http://cs.brown.edu/courses/cs016/static/files/docs/ReadmeGuide.pdf

	Installing, Handing In, Demos
	Using IntelliJ
	Introduction
	Your Task
	README

	Decision Trees
	Vocabulary
	Training Data
	The ID3 Algorithm
	Information Gain, Remainder & Entropy

	On Training and Testing Data
	Testing Data and Grading
	Testing data vs. JUnit testing

	Important Notes and Reminders
	Support Code
	Written Questions
	What to Hand In
	Sources

