
CS 16
Introduction to Python

Introduction to Algorithms and Data Structures

Introduction to Python
Due: May 24th - 26th (hand in by your next section)

Overview

Welcome to the Python lab! This is due one week after you start the lab in section, to be
handed in by the next section (this means each person’s due date depends on when they
have section).

1 What is Python?

Python is a programming language! It bears some resemblance to Java, but in general it is
cleaner and easier to read. A few more important differences from Java:

• While variables in Python do have types, you don’t need to declare them when you
first use variables! You write x = 1 rather than int x = 1. In fact, you can write
x = 1 and then x = "abcd" in the same program. After the first assignment, x is
an integer; after the second, it’s a string. (N.B. In general this is a very bad idea, so
avoid it!)

• The Python environment lets you type bits of code and see what happens without an
intermediate compiling step. This makes experimentation and testing very simple.

• Look how easy Python is to read! Python uses English keywords and natural-sounding
syntax instead of a lot of punctuation and symbols, making it look less scary than
code in most programming languages. For example, this is a declaration and an
if-condition in Python:

x = 1

if x > 0:

print("x is positive")

print("What beautiful syntax!")

print("Do you love Python yet?")

• You’ll notice that instead of using curly braces to delimit code blocks, Python uses
whitespace indentation. That means that correctly nesting your code now has seman-
tic meaning, instead of just making it easier to read. More on syntax later!

Like Java, Python also handles your memory management, meaning it allocates memory
and has a garbage collector to free up that memory once it is no longer needed. This makes
your life a lot easier!

Introduction to Python May 17, 2021 1

CS 16
Introduction to Python

Introduction to Algorithms and Data Structures

2 Writing your first program in Python

It’s tradition when learning a new programming language that your first program is a “Hello
World” program, so let’s start out by writing a simple one-line program that prints “Hello
World!”

2.1 Setting up

Clone the Python Lab stencil code from GitHub into a directory of your choosing on your
computer. Click here to get the stencil code. Check out the Github Guide for more
details about how to clone a repo!

If you have a Windows computer, make sure you’re using Git Bash (which comes with
your installation of Git) or some other Linux terminal to run the commands described.

Before we begin programming, we need to configure the editor you will use to write
your Python code. While you are free to use any editor of your choice, we recommend you
use VSCode.

2.2 Setting up your editor for Python

First we will make the .py file you will write your program in.

1. Create a new file: File > New File

2. Save this file, File > Save, naming it helloWorld.py. The .py is very important!!
Make sure the file is saved in your pythonIntro directory.

We now need to configure VSCode to work best with Python:

1. On the bottom-left side of the VSCode, click the Settings logo. This should open
up a new tab in the editor. This is where you can configure different preferences for
your VSCode. Take a look at some of the options and feel free to play around with
them.

2. In the Settings search bar, type tab size. Change the Editor: Tab Size to be 4

and change Editor: Insert Spaces is ticked to ensure tabs are inserted as spaces.

3. Close this tab and you’re ready to go!

2.3 Let’s get to coding!

If you took CS15, you are probably familiar with using these text editors to write Java
(.java) code. We’ll be using them to write Python (.py) files in CS16.

It’s important you have configured your editor as specified above because Python uses
whitespace indentation to delimit your code (more on this later). For the sake of conve-
nience, we insist that you use 4 spaces to indent your code. It will make your code look
consistent across machines and prevent inconsistencies between spaces and hard tabs.

Now, let’s begin! Type:

Introduction to Python May 17, 2021 2

https://classroom.github.com/a/UBDY_Lk2
https://docs.google.com/document/d/1x4-iYjHz1dZcI77QZ2E2NzEBPUgEWj7hRq2shDczX5s/edit?usp=sharing

CS 16
Introduction to Python

Introduction to Algorithms and Data Structures

print("Hello world!")

and save your file. Now go back to your terminal (again, use Git Bash if you’re on Windows),
make sure you are in the pythonIntro directory and type python3 helloWorld.py to run
the program. It will print Hello world! to your terminal.

Hold on, do you really have to type python3 yourProgramName.py every time you want
to run a program? Heck no! At the top of your helloWorld.pyfile, type:

#! /usr/bin/python3

Or if you’re on Windows, type:

#!C:/Users/_YOURUSER_/AppData/Local/Programs/Python/Python37/python.exe

This tells your machine to use Python to interpret the file when executed. Then save
the file, go back to your terminal, and type chmod +x helloWorld.py to make the file an
executable. (chmod is a terminal command used to change file permissions, in this case to
make your Python file executable. The +x argument adds executability for the owner of
the file, you!) Now if you type ./helloWorld.py into your terminal your program prints
Hello world! to the terminal. From now on, all of your Python files should start with #!

/usr/bin/python3 (or the corresponding path for Windows).

3 Python Syntax

Let’s say that instead of wanting to write a program that just prints “Hello world!” and
then ends, you want to write a program with a function that takes in a string with your
name as the parameter, and prints “Hello <name>!” If we were to write this method in
Java, it would look something like this:

public void sayHello(String name) {

System.out.println("Hello " + name + "!");

}

Following the CS16 Python coding conventions, the Python function would look like this:

def say_hello(name):

"""say_hello: string -> nothing

Purpose: prints a greeting of the form "Hello <name>!"

Example: say_hello("Doug") -> "Hello Doug!"

"""

print("Hello " + name + "!") # this is the function body

Introduction to Python May 17, 2021 3

http://cs.brown.edu/courses/cs016/static/files/docs/PythonStandards.pdf

CS 16
Introduction to Python

Introduction to Algorithms and Data Structures

When you define a function in Python, you simply write def (short for define), followed
by the name of the function, with all words lowercase and separated by underscores, then
the parameters in parentheses, and lastly a colon. You do not need to specify the type of
your parameters in Python!

Next, document your function with a block comment! Triple quotes (""") create block
comments much like /* do in Java. # creates an in-line comment, like // in Java. The block
comment should include a description of the parameters and return type, the purpose of
the method, and an example of the method in use. This type of block comment is called a
docstring. It is crucial to writing readable code that is easy to understand later.

There is a detailed handout on coding conventions on the course website that you can
read for more information on writing good Python.

The actual body of this function is simple:

• First off, it is indented four spaces from the function declaration. This is crucial;
incorrectly indented code will not work. In Python, whitespace indentation is used
to nest blocks of code, rather than curly braces. Each subordinating code block must
be indented four spaces relative to the code on which it depends. As you get used to
programming in Python, this will become second nature.

• The code here prints the concatenated string of "Hello" + str + "!" to the shell.

To test out this function, type it into your text editor, and put this code at the end:

if __name__ == "__main__":

say_hello("Doug") # substitute your name

It’s very important this code comes after the function definition, because unlike Java,
Python functions must be defined before they can be called.

This bit of code will allow you to run it as a standalone program. The main line here is
similar to Java’s public static void main(String args[]). It contains the code that
will run when you execute the program. Save your file (make sure it ends in .py) and then
run it using one of the two techniques we discussed earlier. The terminal will now greet you
as if your name is Doug; substitute your name into the parameters and it will greet you!

gemini ~/course/cs0160 $ python3 sayHi.py

Hello Doug!

Let’s look at something a little more complicated. Say you wrote out pseudocode for a
function that prints out the numbers 1 to n for n ≥ 1. It might look something like this:

Algorithm printOneToN(n):

This algorithm prints out the numbers from 1 to n for n ≥ 1.

If n is less than 1, it prints an error message to alert the user.

Input: an integer n

Introduction to Python May 17, 2021 4

CS 16
Introduction to Python

Introduction to Algorithms and Data Structures

Output: none

if n < 1 then

print "Invalid input: integer value cannot be less than 1"

return

for i from 1 to n

print i

In Python, following the CS16 Python coding conventions, it would look like this:

def print_one_to_n(n):

"""print_one_to_n: int -> nothing

Purpose: this function prints out the numbers from 1 to n for n >= 1.

If n is less than 1, it prints an error message to alert the user.

"""

if n < 1:

print("Invalid input: integer value cannot be less than 1")

return

for i in range(1, n + 1):

print(i)

Notice that there aren’t many differences between the pseudocode and Python. That’s one
of the reasons Python is so wonderful! Let’s go over some of the new Python syntax.

• An if-condition starts with if followed by the condition and a colon, no parentheses
needed. Even though there are multiple lines of code in the if-block, there are no
curly braces because everything is indented four spaces. We could also write the
if-statement as the equivalent statement:

if not n > 0:

• Python favors English keywords in the place of punctuation, so you will see not used
in Python in place of ! in Java, and instead of &&, and or for ||.

• The function also has a for-loop to print the numbers from 1 to n. So why does it say
range(1, n + 1)? The built-in function range() generates arithmetic progressions
based on the optional start parameter, and required stop parameter that you feed
it. The range function’s start parameter is inclusive, but the stop parameter is non-
inclusive. So, if you type range(1, 10), it includes the numbers from 1 to 9. So if we
want the function to print out the sequence, including n, we have to write range(1,

n + 1).

There is a lot more to Python syntax, but these are some basics to get you started.
Here is a super nifty Java to Python conversion table, which will be a boon to you in the
coming weeks (note that some of these, like print, were still written in Python2):

Introduction to Python May 17, 2021 5

http://cs.brown.edu/courses/cs016/static/files/docs/PythonStandards.pdf

CS 16
Introduction to Python

Introduction to Algorithms and Data Structures

4 Testing

In future Python assignments, we’ll be expecting you to write thorough test cases to exercise
your code and ensure it is correct. Testing is a very important part of software engineering.
When new features are added to a software package, or when code is refactored to improve
design/readability, developers need a way to make sure none of the old functionality breaks.
Tests will allow you to make sure your functions do precisely what they say they do. They
can also help in debugging — if you know from your tests which functions are working, you

Introduction to Python May 17, 2021 6

CS 16
Introduction to Python

Introduction to Algorithms and Data Structures

won’t waste time looking for bugs in the wrong place. Let’s take a look at assert.

def add(a, b):

return a + b

if __name__ == "__main__":

assert add(2, 3) == 5, "Arithmetic failure"

assert will check that both sides of the equality are equal. If the evaluation of the first ar-
gument does not equal the second argument, an AssertionError exception will be thrown,
printing the (optional) message. More generally, if the statement following assert evaluates
to False, then the exception will be thrown and print out the (optional) message.

We will be putting a lot of emphasis on testing throughout this course, in homeworks
and projects. Testing should not be considered an additional aspect of a problem or project,
but rather a core part of it. Given this, we want you to write your tests before you write
your code. This practice is known as Test-Driven Development (TDD for short). We’ll be
walking you through the steps of TDD that will help you write code for is prime.

To test factorial (more on this method in the next section), print the result of the
factorial method with a number you pass in. If your code returns the correct value,
you’ve probably implemented it correctly.

4.1 Design Recipe

1. Write some examples of the data your function will process. For instance:
Input: 4

Output: 24

Think of all edge cases your function may encounter, and write your own examples.

2. Outline the method signature using header comments to describe the Input/Output
and define what the function does. As in the stencil in sectionOne.py, we have given
you:

def factorial(n):

"""factorial: int [n] → int [n!]

Purpose: Returns the factorial of the argument

Example: factorial(4) -> 24

"""

3. Use the method signature and your examples to write test cases. You should write
another function called test factorial in the file and add in all of your test cases
in that function. For example:
assert factorial(3) == 6, "Test failed: Factorial of 3 is 6"

Add in your other examples as assertions.

Introduction to Python May 17, 2021 7

CS 16
Introduction to Python

Introduction to Algorithms and Data Structures

4. Implement the method factorial now! (more hints in the next section)

5. Run your test cases by calling test factorial in the main call and then executing
the Python file.

4.2 Raising Exceptions

When you reach the Python problem in sectionOne.py, you’ll see that there is some code
at the beginning of the function body of factorial that looks like this:

if n < 0:

raise InvalidInputException("input must be greater than or equal to 0")

This is called raising (or throwing) an exception. You may be familiar with some excep-
tions (e.g. the dreaded NullPointerException or ArrayIndexOutOfBoundsException)
from your work in CS15 last semester. Exceptions are used to detect various errors during
program execution. Now, you will learn how to raise your own exceptions! Woohoo!!

Open sectionOne.py and examine the code above. When computing the factorial of a
number, that number must be an integer greater than or equal to 0. But what if the user
of your program doesn’t know that, and they try to run factorial(-3)? The above if

statement will be entered, and an InvalidInputException will be raised. If this if state-
ment was not present in the code, there would be some pretty big issues, as your base case
would never be reached, and the method would infinitely recur.

When you write methods, your job is to ensure that the input given is valid before contin-
uing on with your program. Using if statements with similar structure to the one above,
you have to check for valid input - if the input is invalid, you have to raise an InvalidInpu-
tException that prints out an informative message regarding why the exception was raised.
Don’t worry about writing your own InvalidInputException class, and, for now, don’t worry
about determining whether a number is an integer or decimal.

5 Your First Python Problem

Now it is time to write a short Python program that prints out the first 100 Fibonacci
numbers. Remember, each number in the Fibonacci series is the sum of the two numbers
before it, and the first and second numbers of the series are both one.

Once you complete this assignment, create a second method which recursively calculates
and returns n! where n is the input value. Make sure to follow the testing design recipe for
this problem.

Introduction to Python May 17, 2021 8

CS 16
Introduction to Python

Introduction to Algorithms and Data Structures

Methods

You need to implement the following methods in the sectionOne.py file that was installed
earlier.

• fibonacci: This method takes no arguments and returns nothing. It prints out the
first one hundred Fibonacci numbers, with one number per line.

• factorial: This method takes a non-negative integer n as an argument and it returns
the n!. This method should be implemented in a recursive fashion. Remember that
0! is 1!

Raising Exceptions

You may notice that there is already some code written in the definition for factorial.
This was explained in the previous section of the lab.

6 Python lists

You can follow along in this section using python3 command in terminal. This will produce
the >>> symbol, indicating you are in a Python environment and can run Python commands.
Python lists will be used frequently in CS16. Lists are Python’s version of Java arrays. To
create a list:

>>> myList = [10, 2, 15, 30]

And index into them in much the same way as in Java:

>>> myVal = myList[2] #myVal will now = 15

Unlike Java arrays, Python lists also have methods you can call, which you can read about
in the documentation. Here’s an example that builds a list of the first ten perfect squares:

>>> perfectSquares = []

>>> for i in range(1, 11):

... perfectSquares.append(i*i)

#append adds the specified parameter to the end of the list

If you need to instantiate a list of a certain length (i.e. you want to use it as an array), the
following syntax will be very helpful:

>>> pythonArray = [0]*5

>>> pythonArray

[0, 0, 0, 0, 0]

Introduction to Python May 17, 2021 9

CS 16
Introduction to Python

Introduction to Algorithms and Data Structures

“But what if I need a multi-dimensional list/array?” you ask. Great question! Python
handles this data structure as a list of lists:

>>> grid = [[1,2,3], [4,5,6], [7,8,9]]

>>> grid

[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

>>> grid[0][1]

2

>>> grid[2]

[7,8,9] #notice that row 2 is itself a list within the 2D grid list

This may seem strange at first, but as long as you remember “lists within lists,” you’ll be
fine. You can read about additional Python data structures, (like dictionaries!) at:
https://docs.python.org/3.7/tutorial/datastructures.html

6.1 List comprehensions

Python supports a concept called “list comprehensions” which can help you create lists
very easily. Here are a few examples:

>>> vec = [2, 4, 6]

>>> [3*x for x in vec]

[6, 12, 18]

>>> [[x,x**2] for x in vec if x > 3] #x**2 in Python is x*x

[[4, 16], [6, 36]]

>>> [[0]*3 for i in range(3)]

[[0,0,0],[0,0,0],[0,0,0]]

7 Object-oriented programming in Python

Python supports object-oriented programming as you learned in CS15 with Java. To do
so, you declare a class with properties (instance variables) and capabilities (methods) as
follows:

class Student:

"""The student class models a student with a name, ID number,

a graduation year, and a concentration.

"""

def __init__(self, name, idNumber, concentration, graduationYear):

self._name = name

self._idNumber = idNumber

self._graduationYear = graduationYear

Introduction to Python May 17, 2021 10

http://docs.python.org/tutorial/datastructures.html

CS 16
Introduction to Python

Introduction to Algorithms and Data Structures

self._concentration = concentration

def set_concentration(self, concentration):

self._concentration = concentration

Other accessors/mutators...

def print_student_info(self):

print("Student named " + self._name + " has ID number " + \

str(self._idNumber) + ", is graduating in " + \

str(self._graduationYear) + " and is studying " + \

self._concentration + ".")

To see how this Python class may be compared to a Java implementation, check out
the file Student.java.To actually create an instance of this class, and call methods on it,
we do the following:

if __name__ == "__main__" :

dara = Student("Dara", 1002354, "Physics", 2018)

dara.set_concentration("Computer Science")

dara.print_student_info()

Create a file called student.py and test this out for yourself. What does this example
show us?

1. A class constructor is defined using a special method named __init__, which can take
any number of parameters. To create an instance of the class, we call the constructor
and pass in the appropriate parameters. Unlike Java, we don’t use a “new” operator.

2. Unlike Java, instance variables belonging to a class do not need to be explicitly defined
at the top of the file. Like local variables, we don’t need to specify their types, and
they spring into existence when they’re first assigned a value. If we try to use a
variable that has not yet been given a value, we’ll get an AttributeError that looks like
this: AttributeError: Student instance has no attribute ‘_idNumber’. This
is kind of like a Java null pointer in that initializing your variables is important.

3. We access/mutate the value of an instance variable with self._variableName, NOT
by using _variableName.

4. The methods belonging to a class should take in self as their first parameter. When
you call dara.print_student_info(), it calls the print student info method of
the Student class, and passes in dara as the first parameter. So when you define the
method, it must take in a reference to the object it’s modifying, and when you call the
method, you don’t supply that first parameter. For this reason, method definitions

Introduction to Python May 17, 2021 11

CS 16
Introduction to Python

Introduction to Algorithms and Data Structures

will always have one more formal parameter (in the method definition) than actual
parameters (when we invoke the method).

5. We couldn’t fit the entire print statement of print_student_info on one line. We
could have broken up the method into multiple calls to print. Instead we used a \

to write a multiline Python statement. Remember Python uses whitespace to delimit
code, not braces and semicolons like Java, so we need a way to tell Python the next
line is still a continuation of the current command.

Now, try changing the method signature to:

def __init__(self, name, idNumber, concentration, graduationYear=2020):

And the instantiation of Student in main to:

dara = Student("Dara", 1002354, "Physics")

This tells Python to set the default value of graduationYear to 2020 if no parameter
is supplied. Often you have a function that uses lots of default values, but you rarely want
to override the defaults. Default argument values provide an easy way to do this, without
having to define lots of functions for the rare exceptions. Also, Python does not support
overloaded methods/functions and default arguments are an easy way of “faking” the over-
loading behavior. (Note: once you use a default parameter, all subsequent parameters must
have default values as well.)

7.1 Inheritance

The syntax for subclassing is as follows:

class SubclassName(SuperclassName):

The class SuperclassName must have already been defined. Inheritance works approx-
imately the same as it does in Java. One major difference is the way to call methods of
your parent class. Instead of using super.methodName(arguments), just call
SuperclassName.methodName(self, arguments).

7.2 Private variables

Python does have private instance variables available to classes. By declaring an attribute
name with 2 underscores as a prefix (e.g. __myAttribute), that attribute can now only be
accessed from inside an object. However, Python is known for its flexibility and openness,
so some programmers follow a different convention: a name prefixed with an underscore
(e.g. _myObject) should be treated as private and not used outside of the class in which it
is contained (even though it technically is still available).

Introduction to Python May 17, 2021 12

CS 16
Introduction to Python

Introduction to Algorithms and Data Structures

8 File I/O

8.1 Reading a .txt file

File I/O is very simple in Python, and is one of the tools we’ll expect you to become
familiar with this semester. You can manipulate files from JPEGS to spreadsheets, but
we’ll start off working with a simple text file. Open up the demo.txt file, to see what you’ll
be working with. Now, open up Python in your terminal by running python3, and try out
the following commands:

>>> myfile = open("demo.txt")

>>> colors = []

>>> for line in myfile:

... colors.append(line) #be sure to tab on this line

...

>>> myfile.close()

>>> print(colors)

[’red\n’, ’orange\n’, ’yellow\n’, ’green\n’, ’blue\n’, ’indigo\n’, ’violet\n’]

>>> for hue in colors:

... print(hue.strip())

...

red

orange

yellow

green

blue

indigo

violet

The \n character is called a “newline” and represents a carriage return in a file. We use
the strip() method to remove unneeded whitespace from our strings. Always make sure
to close the files you open to avoid eating up system resources.

8.2 Writing to a .txt file

Try the following code in the Python interactive interpreter:

>>> file = open(’my_file.txt’, ’w’) #the ’w’ arg allows us to write to the file

>>> file.write(’This is the first line\n’)

>>> for i in range(11):

... file.write(str(i) + ’\n’)

...

>>> file.close()

Introduction to Python May 17, 2021 13

CS 16
Introduction to Python

Introduction to Algorithms and Data Structures

Verify that this code created a file named my file.txt in your current directory that
contains “This is the first line” and the numbers 0-10. The built-in function str() converts
objects, such as ints, to their string representations.

9 Writing your second program in Python!

Yay! Now it’s time to play with objects in Python! Also with pies! Because pies are amaz-
ing and delicious. In your pythonIntro folder, you should see two files called pieCount.txt

and pieCounter.py. pieCount.txt is a text file (woohoo! you know how to read from and
write to these) with each line of the form <name of a TA>, <number of pies>. Through-
out the month, TAs have been recording how many pies they eat and <number of pies>

is the number of pies that a given TA ate at a given sitting.

The file pieCounter.py in your stencil folder is an almost empty .py file that you’ll fill up
with code! YAY!

9.1 Your code

You should create one object that takes in a filename (a Python string) as a parameter
to its constructor. You can call your object whatever you want, but I’ll refer to it as
PieCounter. PieCounter should have one method (which I’ll call count pies) that takes
in the name of a specific TA, counts up how many pies that the TA has eaten this month,
and prints that number. Once you’ve written your class, instantiate your class in the
name == " main " block at the bottom of the .py file and call your method, passing

in a few different TA names. Some examples are Lisa Yang, Doug Woos, and Lucy Qu.

9.2 Testing

As usual, we expect you to use asserts to test your functions. Refer to the Student class
for help on the syntax to call class methods. Write method signatures for methods you
might need for the class you are about to write and follow the testing design recipe from
day 1 to write test cases. Read the hints section that follows for ideas on how to factor
code into test-able methods.

Do not yet worry about testing for invalid file names given to the open() method. You
will learn how to test exceptions on a future homework. We do expect that you will test
the functionality of the string parsing you do on the contents of the file.

9.3 Hints!

1. Characters of text files are strings in Python! To cast a string to an integer, use the
int() function. int(‘5’) returns 5.

Introduction to Python May 17, 2021 14

CS 16
Introduction to Python

Introduction to Algorithms and Data Structures

2. Opening and closing files is expensive! Do you want to open and close the file ev-
ery time a user calls count pies? Or should you read in the file’s contents in the
constructor and never have to open the file again?

3. If you don’t need a counter when iterating through a list, you shouldn’t use range.
Use the following syntax instead:

>>> wordlist = [‘wooo’, ‘I’, ‘love’, ‘pie!!!’]

>>> for word in wordlist:

... print word

...

wooo

I

love

pie!!!

4. You can get all the lines from a file in one list by calling myfile.readlines().

5. split is a super cool method of Python strings! Here’s an example use: "Samuel -

L. - Jackson - loves - pretzels!!!".split(‘-’) returns ["Samuel ", " L. ",

" Jackson ", " loves ", " pretzels!!!"]. That is: given some delimiter as a
parameter, it breaks a string up into chunks, separated in the original by that de-
limiter. By default, this delimiter is a space. Check out Python’s documentation for
more details like how to change the delimiter.

HANDING IN

You’re done with the Python Intro! To hand in your code for this lab ensure your repo
on GitHub is up-to-date with your final version. Make sure your files are well-tested and
commented!

10 Notes about Python

10.1 Python version

Please do NOT use Python 2.7 because Python 2.7 is not compatible with Python 3,
which we’ll be using for the duration of the course (and is now the industry standard).

10.2 The use of “if main”

For reasons explained here: https://developers.google.com/edu/python/introduction
(under section Python Module) you should always put all code you wish to execute directly
(i.e. code not part of a specific class or function definition) under a big if statement. The
Python syntax for the condition is: if __name__ == "__main__". Here’s an example:

Introduction to Python May 17, 2021 15

https://developers.google.com/edu/python/introduction

CS 16
Introduction to Python

Introduction to Algorithms and Data Structures

def function():

Function definition goes here.

if __name__ == "__main__":

Code to be executed when you run this program

All your Python handins are required to follow this convention. We will deduct points
from your grade if your code does not include this, so don’t forget!

10.3 Coding Conventions

We require you to follow the CS16 coding conventions for Python assignments throughout
the semester. We expect you to read and follow it. You can find the coding conventions
here: CS16 Python Convention

10.4 Additional reading

This introduction to Python only scratches the surface of what Python is and what it can
do. You can find the official tutorial here: https://docs.python.org/3/tutorial/. The
sections that will be most useful for CS16 are: 1, 3, 4.1-4.6, 4.7.6, 5, 6, 7.1, 8.1-8.5 and 9.3.

Take a look at this blog post about common anti-patterns and how to avoid them.
Anti-patterns are, essentially, coding solutions many people use that are inefficient, con-
fusing, or even incorrect. Following some of the tips in this post can make your Python
programs more efficient and more readable.

Introduction to Python May 17, 2021 16

http://cs.brown.edu/courses/cs016/static/files/docs/PythonStandards.pdf
https://docs.python.org/3/tutorial/
http://lignos.org/py_antipatterns/

	What is Python?
	Writing your first program in Python
	Setting up
	Setting up your editor for Python
	Let's get to coding!

	Python Syntax
	Testing
	Design Recipe
	Raising Exceptions

	Your First Python Problem
	Python lists
	List comprehensions

	Object-oriented programming in Python
	Inheritance
	Private variables

	File I/O
	Reading a .txt file
	Writing to a .txt file

	Writing your second program in Python!
	Your code
	Testing
	Hints!

	Notes about Python
	Python version
	The use of ``if main''
	Coding Conventions
	Additional reading

