
CS 16
Debugging Lab

Introduction to Algorithms and Data Structures

Debugging Lab
Due: June 14th - 16th (hand in by your next section)

1 Overview

Welcome to the debugging lab! Bugs are the worst. They hinder our progress on projects
and sometimes make our programs behave in ways we don’t understand. Our goal for
this lab is to demystify some common bugs, introduce some tools to help understand them
better, and put those tools into practice by debugging some code. We will guide you through
debugging one program, and then have you practice what you’ve learned by debugging
another program on your own.

2 Installing and Handing in

1. Install four files: Athlete.java, Competition.java, Ranking.java, Vaulter.java
in your debugIntro directory from GitHub. Click here to get the files.

2. To “hand in”, have a TA check that you’re done in your section or later at TA hours.
Remember that the due date is one week after you start the lab in section - complete
it and hand it in by your next section. This means each person’s due date depends
on their section time.

3 Common Errors and Exceptions

3.1 Java Errors and Exception

You’ve probably run into a lot of these errors in CS15, but we wanted to give you a refresher
on these bugs and where to look first when you encounter them.
The first thing to keep in mind is that there are two main classes of errors in a Java pro-
gram: compiler errors and runtime errors.

Compiler errors occur when the Java compiler detects something unusual when try-
ing to compile your code, before your program is even run. This is often a syntax error,
an uninitialized variable, or a similar problem that simply doesn’t follow the Java rulebook.

Runtime errors occur after you have successfully compiled your code, but encounter
a problem when you try running through your program. Runtime errors are often harder
to detect and resolve because they often depend on the value of a given variable at runtime.

1. NullPointerException - This usually occurs when you try to use something that
hasn’t been initialized or instantiated. Here are some possible causes:
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• Calling a method on an uninitialized variable - You should check that every
variable was properly initialized before being used, (especially instance variables
since they can be easy to miss). For example, calling a method on team will
throw a NullPointerException if you have not initialized it with a value:

Team team;

team.getAthlete();

Fix: make sure to initialize team with a value.

• Trying to access a method/field of a null object - This can also happen when ac-
cessing null objects in arrays. For example, if teams[0] is null, calling a method
on it will result in a NullPointerException too.

Team[] teams = new Team[3];

teams[0].getScore();

2. ArrayIndexOutOfBoundsException - This happens when you try to index into
a position of an array that does not exist. The following code, for example,

Country[] countries = new Country[5];

countries[5] = new Country("USA"); // error here!

will throw a java.lang.ArrayIndexOutOfBoundsException:5 error. This is because
Java (and Python) arrays are indexed by 0, this means the largest possible index for
the countries array is 4, not 5!

Additionally, here are some more causes of ArrayIndexOutOfBoundsExceptions:

• Off by one errors - By far the most common reason for this exception is miscount-
ing by one. For example, you might have an array of size 10, and accidentally
have a for loop that iterates from 0 up to and including 10. This would result
in an exception on the last pass of your loop.

• Calculation errors - In a similar vein to before, you might accidentally calculate
an index incorrectly, causing it to be negative or too large. This is especially
common while working with problems where you have to access certain array
entries, like if you had to get all the diagonal entries of a 2D array.

• Rounding errors - This is especially relevant when dealing with the base cases
of methods. Often, you might be asked to find the midpoint of an array, which
involves doing some division. Since you are working with ints, Java will round
up/down, potentially in a way that causes this exception.

Debugging Lab June 8, 2021 2



CS 16
Debugging Lab

Introduction to Algorithms and Data Structures

3.2 Python Errors and Exception

In this lab, you will be debugging programs written in Java, but you’ll also be writing
Python programs in this class! The errors thrown are similar to the ones in Java, just with
slightly different names. Here are some common errors you might encounter (but feel free
to look them up as you encounter more):

1. SyntaxError - Similar to Java syntax errors, this occurs when the code doesn’t obey
Python syntax. For example, the following will throw a syntax error in Python be-
cause you can’t assign a string to an integer:

>>> ‘foo’ = 1

SyntaxError: invalid syntax

Note: In Python, whitespace (spaces, tabs, indents) is used to denote scope (whereas
in Java, this is done with brackets). A common syntax error is misplacing or incor-
rectly using whitespace! This means that you should be extra careful about indents
and spaces when you’re coding in Python.

2. NameError - This happens when a variable is not found in the local or global scope
(make sure all variables you use have been defined!). This is equivalent to a cannot

find symbol error in Java.

>>> x

NameError: name ‘x’ is not defined

3. AttributeError - This is thrown when referencing an invalid field or method (e.g.
if the method for the object doesn’t exists, or when the object itself is null).

>>> team = None

>>> team.getAthlete()

AttributeError: ‘NoneType’ object has no attribute ‘getAthlete’

Look back at the NullPointerException section above, does it look familiar?

4. IndexError - Similar to an ArrayIndexOutOfBoundsException in Java, this
happens when you index into an invalid index of a list.

>>> list = [1,2,3]

>>> list[3]

IndexError: list index out of range

5. TypeError - Unlike Java programs, where the compiler will tell you when you have
mismatched types, Python programs will only tell you at run-time if you have a type
error. This usually happens when a function is applied to an object of an incorrect
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type. For example, here’s what happens when you try to add a string to an int:

>> "two" + 2

TypeError: must be str, not int

3.3 General Bugs

1. Infinite loops - You compile the program with no errors, and it seems to run... but
then it never terminates and now everything is stuck!! This could be a nasty case of
an infinite loop.

Infinite loops happen when the condition of a loop is never false, and so the code
continues to execute forever. The most common way for this to happen is with a
while loop:

int count = 0;

while(count < 5) {
System.out.println(count);

}

Since the condition of the while loop is always true, the while loop never breaks,
and number 0 is printed forever.

Fix: Make sure the while loop’s condition is met at some point! One possible way to
fix this here is by adding count++; at the end of the while loop so it will eventually
reach 5!

Note: Infinite loops can also happen with for loops! We’ll leave it as an exer-
cise for you to figure out why this code causes an infinite loop:

for(int i = 0; i < 5; i--) {
System.out.println(i);

}

2. Logical bugs - Your code compiles and runs without errors, but it doesn’t seem to
be doing what you intended it to do. Oftentimes, these bugs might be more difficult
to solve because there is no immediate error message indicating what might’ve gone
wrong. While there is no one size fits all solution to every problem, here are some
strategies to debug them:

• Print lines - Good ’ol printlines is often your first line of defense. When a
method isn’t behaving the way you want it to, try adding printlines and check
if something is not logically adding up.

Debugging Lab June 8, 2021 4



CS 16
Debugging Lab

Introduction to Algorithms and Data Structures

Note: Sometimes, a mere System.out.println("hello") might not always
be the most helpful when debugging. When you are printing the value of a vari-
able, it is generally a good idea to include a descriptive text with it so that when
you look at your console, the printlines have context. For example:

Don’t print: System.out.println(name);

Do print: System.out.println("Team name: " + name);

Now let’s look at how you can use printlines to solve some common errors.

(a) NullPointerException - For example, let’s say you run into a null pointer
and are not sure where in your program that is happening. You could insert:

System.out.println(variable == null);

throughout your code to find the point of error.

(b) Errors with Arrays - Say that you have an array that keeps going out of
bounds. You could use printlines to track the variables within each loop to
find where the error is happening. If you wanted to check the contents of
an array, simply using

System.out.println( array);

may end up printing something like this: [I@6d06d69c.

Instead, you might need to loop over the array and print out the contents
at each specific index.

• Commenting out Code - This can be helpful to narrow down which line of
code is causing the bug. Try commenting out various parts of your code to see
if the behavior of your program changes.

• Use the Debugger - Eclipse also has it’s own built-in debugger! The Eclipse
Debugger is designed to give you tools that will make debugging your programs
much easier. Rather than writing 20 print lines and running the entire program,
the Eclipse debugger allows you to accurately inspect different portions of your
code while it’s running at your discretion. Here’s a guide on how to use it!

4 Using IntelliJ

In order to set up IntelliJ to complete the lab and all the following projects, do the following
after getting the stencil files:
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• Open IntelliJ and select File->New->Project

– If it isn’t already selected, select Java 8 as the Project SDK. Then click “Next”.

– Uncheck “Create project from template” if it is checked. Then click “Next”.

– Enter “debugIntro” for the project name.

– Do not use the default location. Instead, hit the “Browse” button, navigate to
your debugIntro folder, and click OK.

– Click “Finish.”

– If it isn’t already made for you, create a source folder: right-click the project
name and use New->Directory to create a new folder in your new project named
“src”. Then right-click “src” and use Mark Directory As->Sources Root to
make it a source folder.

– Now we’ll create two new packages. Use File->New->Package to create a new
package in your new source folder named “ranking” and move the Ranking.java
and Vaulter.java files into this package.

– Repeat the last step. Use File->New->Package to create a new package in
your new source folder named “olympics” and move the Athlete.java and
Competition.java files into this package. Ignore any errors.

– You should now have two packages under your “src” folder: ranking and olympics.

• To run the programs: Right-click on Ranking.java under the ranking folder and
select Run. Now you can run your program by pressing the green “play” button at
the top of your screen and selecting “Java application” if prompted. Press the red
“stop” button to terminate the program.

5 Guided Debugging

The TAs have written these two Java programs, but they seem to be a little bug-ridden.
Let’s try debugging them! After setting up IntelliJ, navigate into the ranking package.

We recommend making two new folders in your debugIntro directory and moving the
stencil files as follows: Ranking.java and Vaulter.java into ranking and Athlete.java

and Competition.java into olympics. In order to run this on the terminal, cd into your
new ranking directory and type:

• javac *.java to compile

• cd .. to go up a directory

• java ranking.Ranking to run

Debugging Lab June 8, 2021 6



CS 16
Debugging Lab

Introduction to Algorithms and Data Structures

5.1 Ranking

The HTAs are competing in the pole-vaulting event at the Olympics but the judges lost the
final ranking and only have the raw results. Jumping to the rescue, the CS16 TAs write a
program to help.

Open up ranking as a project in your favorite text editor (we recommend IntelliJ). This
folder contains a buggy version of a program modeling a pole-vaulting competition between
Vaulters. Take a few minutes to familiarize yourself with the two files, Vaulter.java and
Ranking.java. The purpose of Ranking.java is to rank the competitors by their highest
height jumped and add a new Vaulter to the existing ranking in order. Unfortunately, it
doesn’t seem to be working.

1. Run Ranking.java as a Java Application. You should see that the following lines are
printed:
Running competition...

Adding vaulter to rankings...

The code is running, but it doesn’t terminate and no error messages are printed -
if the program is short then this often indicates an infinite loop. Look in the above
section to see how we can deal with infinite loops!

Strategy - Print Statements: Although this is not always the case, infinite loops can
often happen when the code never breaks out of a while loop. Add the following line in-
side of the while loop: System.out.println(curVaulterIndex). Now, run the program.
What is being printed? Is curVaulterIndex changing the way you expected it to for each
iteration of the loop? If not, why might this lead to an infinite loop?

2. Now, you should run into the following exception:
java.lang.ArrayIndexOutOfBoundsException: 4

This means that an error occurs when trying to index into an array; the code is
attempting to access an index which does not exist within the length of the array.
See the section above for some possible causes of this type of error.
Although your line number may be different (if you have added or deleted lines of
code), note that the line Ranking.java:70 indicates that the exception occurred at
line 70 of the file Ranking.java.

Therefore, look at line 70 of your file (or whichever line is specified by your stack
trace) and see whether you can determine why your code is accessing an index not
within the array.
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Note: You will find that for some problems, it’s necessary to try multiple different debug-
ging strategies.

Strategy 1 - Print Statements: Try adding the following line in-
side of the for loop that adds the remaining players into the ranking:
System.out.println("newRankings at i: " + newRankings[i]). Now when you run
the program, notice that the same ArrayIndexOutOfBoundsException error is thrown,
this time after several print statements have been outputted.

Note: Sometimes a well-meaning print statement is not as helpful as we think it is going
to be. In cases like this, what else can we do?

Strategy 2 - Assess Logic: When you go to the line producing the error, you may first
want to see where each of the arrays into which you are indexing is initialized. Your error
means that indexing into an array is being done incorrectly, so it’s valuable to think about
how the arrays in question are constructed and manipulated up to the point producing the
error. How is newRankings initialized? What is its length? Is this length dependent on the
length of oldRanking in any way?

3. Immediately, you should notice that all of the information printed is null. First, de-
termine where the null value is being printed and then attempt to determine where the
null value is originating from. Hint: You may need to look at the file Vaulter.java.

Strategy - Use Program Output: Since the Vaulter Rankings are being printed in main

in the Ranking.java file, you should already be able to tell that the names generated are
null. This is particularly convenient for debugging the methods called inside of the print
statement because their results are immediately printed out!

4. There were a few ways to solve the previous bugs. If you were able to get the re-
sults shown in step 5, skip this step. If not, read on. Now, you should see that
Rank 2: Amy is written twice. Since we are trying to add a new Vaulter Doug and
the code was unable to do so, this indicates that either the new Vaulter was never
added to the ranking or it was added at some point and overwritten. See if you can
determine when this may have occurred.
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Strategy - Print Statements You’ll want to find the state of the rankings within mul-
tiple points of the addVaulterToRankings method. That is, you’ll want to print out the
rankings at multiple spots as the rankings are calculated to try figure out where things are
going wrong. Copy the for loop and print statement in main (after the multi-line comment
starting with (”Print Results. Expect:”) and try pasting it in another spot inside of the
addVaulterToRankings method.

Stuck? Take a look at the for loop that adds the remaining players into the ranking. Pay
close attention to the indices used in the loop!

5. At this stage, the list you print out should look like this:
Rank 1: Amy

Rank 2: Doug

Rank 3: Lisa

Rank 4: Lucy

Rank 5: Lionel

6. Lastly, test out your code with the other vaulter rando as well as with Doug.

5.2 Olympics

The previous sections of this lab introduced you to some common bugs and strategies to
address them. Now that you have these tools, it’s time to put them to the test!

This next program models a competition between a group of Athletes and prints out the
names of all Athletes who have qualified (i.e. their race time is under the qualifying time).
To try this out: go into the olympics package and run Competition.java as a Java Ap-
plication. This program again features some common Java errors, but now it’s your turn
to fix them.

If you are running this on your terminal, cd into your new olympics directory and type:

• javac *.java to compile

• cd .. to go up a directory

• java olympics.Competition to run

Once you have addressed the errors and the program is bug-free, you should see the follow-
ing output:

Amy

Lionel
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Now both the ranking and olympics packages should be error-free. Refer to Section 2
for instructions on how to hand in when you’re done!
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