
CS 16, Summer 2021 1 WRITTEN PROBLEMS

Homework 8
Due Friday, July 23 by 11:59pm

Fun Sea Creature Fact: Jellyfish have survived 5 major extinctions and are
older than dinosaurs!

Installing and Handing In

Accept the GitHub assignment here. Homework is handed in through Grade-
scope. For written portion, submit a PDF and match the questions accordingly.
For the coding portion, submit ALL of the .py files.

1 Written Problems

Problem 8.1

Fast Graduation

Purpose: Understanding and writing Topsort
Resources: Topsort Lecture (July 13)

Suppose Katie’s curriculum consists of n courses, all mandatory, all of them
lasting one semester, and all of them offered every semester (i.e. the limit does
not exist). The prerequisite structure of the curriculum can be organized in a
graph, where each node is a course, and there’s a directed edge from node A to
node B if and only if A is a prerequisite for B. (Note that if A is a prereq for B
and B for C, then that implicitly makes A a prereq for C. The arrow from A to
C may or may not be included in the graph.) A course may have any number
of prerequisites.

Write pseudocode for an algorithm that computes the minimum number of
semesters needed for Katie to complete the curriculum. (She may take any
number of courses in each semester). The run time of your algorithm should be
O(|V | + |E|).

1

https://classroom.github.com/a/eiV47aEM

CS 16, Summer 2021 2 PYTHON PROBLEMS

2 Python Problems

Problem 8.2

Multiple shortest paths

Purpose: Practice working with graphs and traversing graphs (will
be helpful for graph project!)
Resources: Intro to Graphs Lecture (June 22) and Shortest Paths
Lecture (June 24)

Let G = (V,E) be an undirected graph with unit edge lengths (i.e., the length
of each edge is 1). Note that there might be multiple shortest paths between
a pair of nodes in G. Write python code for a linear-time algorithm that finds
the number of distinct shortest paths between nodes u and v. (Hint: O(V E) is
not linear, but O(V + E) is) You may assume that there are no parallel edges
or self loops in G, and you may assume that there is at least one path between
u and v, if u and v are both in the graph (which is not guaranteed). You may
also assume that u and v are distinct nodes. Keep in mind that your code need
only return the number of distinct shortest paths, not the paths themselves.
However, in order to find the shortest path(s) you will need to calculate the
distance (in this case equal to number of edges) between the given pair of nodes
in G.

For this assignment, the only data structure you are allowed to use is python’s
list. If you plan to use the list as a queue, you’ll need to figure out how to pop
off only its first element. You are allowed to manipulate and decorate the graph.
A stencil for this code, named numShortestPaths.py, has been provided for
you. When testing, DO NOT write your tests within the example test func-
tions we provide! Our scripts will skip the test functions we provide, so write
your own functions to test your code thoroughly.

Problem 8.3

Merge, Insertion, and Selection Sort

Purpose: Implementing sorting
Resources: Sorting Lecture (June 17) and Section 4 slides

Implement in Python the following sorting algorithms: merge sort, insertion
sort, and selection sort.

Requirements

Your job is to implement the sorts listed above by filling in the methods defined
in the stencil code (in sort.py), so that, given an array of integers, each will
return an array of the same integers sorted in descending order. If you sort
in ascending order or sort in ascending order and then reverse the list, you will
receive a 0. Also please note that you may not change the signature of any

2

CS 16, Summer 2021 2 PYTHON PROBLEMS

stencil method (doing so will result in no credit). You may also, of course, not
call Python’s built-in sort procedure.

• Each sorting algorithm must conform to the following run time require-
ments:

Merge sort must run in worst case O(n log n) time.

Insertion sort must run in worst case O(n2) time.

Selection sort must run in worst case O(n2) time.

• Note: Make sure you throw an InvalidInputException if the input
list is None. Empty lists are fine, though. You may consider them an
already-sorted list.

How To Test Your Code

To test your code, add more assert statements to sort_test.py. DO NOT
write your tests within the example test functions we provide! Our scripts will
skip the test functions we provide, so write your own functions to test your code
thoroughly. Be sure to test all significant cases, as well as testing that your
algorithms handle invalid inputs properly

Sort Profiling

Now that you have your sorting algorithms, why not time them to observe their
relative performances? We have provided among the install files two lists of
10,000 numbers (one per line). numlist1.txt has a truly random assortment of
integers and numlist2.txt is partially sorted. We have also provided a profiler
sort_profiler.py. This profiler runs all your sorts on each file and outputs
the time it takes to run each.

Run the sort profiler and write a brief readme (in profiler_readme.txt)
to discuss the differences between your relative sorting times, including the dif-
ferences in timing for the two text files.

3

	Written Problems
	Python Problems

