
CS 16, Summer 2021 1 WRITTEN PROBLEMS

Homework 2
Due Friday, May 28 at 11:59 PM

Fun Sea Creature fact: Dolphins rest half of their brain at one time!

Installing and Handing In

Accept the GitHub assignment here. Homework is handed in through Grade-
scope. For written portion, submit a PDF and match the questions accordingly.
For the coding portion, submit the .py files.

Overview

Homework is handed in through Gradescope. For written portion, submit a
PDF and match the questions accordingly. For the coding portion, submit the
.py files.

• We will not accept paper handins. You must submit all written
work as a PDF. For information on how to make PDFs of your
work, see the very handy PDF guide. Please make sure to NOT
include any identifying information, e.g. name or banner info on
your handin, as we are anonymizing grading - we appreciate your
help with this.

• Please follow proper pseudocode formatting guidelines. See our
pseudocode standards. If you use LATEX, use the newalg or
algorithmic packages or our CS16 pseudo environment to format
your pseudocode. For even more wizardry, check out the Docs
section of our website for a LATEX handout and tips on improving
your pseudocode.

1 Written Problems

Problem 2.1

Argmax

1. Write pseudocode for the function argmax(L, f), where L is an array
and f is a function. Your pseudocode for argmax should find and return
the element in the array L for which f is maximal. For example, given
L = [1, 3, 4, 2] and f(x) = x2 then argmax(L,f) should return 4 because
42 > 12, 32, 22. If there are two elements that maximize f , return the
first. You can assume that elements of L are valid inputs for f , and that
f outputs real numbers. You can also assume that L isn’t empty or null.

1

https://classroom.github.com/a/hVsi4uSa
http://cs.brown.edu/courses/csci0160/static/files/docs/pdfguide.pdf
http://cs.brown.edu/courses/csci0160/static/files/docs/PseudocodeStandards.pdf
http://www.cs.brown.edu/system/software/latex/packages.html
http://cs.brown.edu/courses/csci0160/static/files/docs/ImproveYourPseudocode.pdf
http://cs.brown.edu/courses/csci0160/static/files/docs/ImproveYourPseudocode.pdf


CS 16, Summer 2021 2 PYTHON PROBLEMS

2. Let’s use the variable R to refer to the worst-case runtime of f on an
element in L. Let’s use the variable n to reference the size of array L.
Give us the big-O runtime of argmax in terms of n and R. Explain how
you came to this conclusion.

Problem 2.2

Big Θ Notation

Demonstrate that f(n) = 10 + 23 log2 n + 58 log5 n is Θ(n8).

Reminders: Remember that big-O is an upper bound, big-Ω is a lower
bound, and big-Θ is a tight bound (i.e. upper and lower). Meaning, to prove
that f(n) is Θ(g(n)) you must prove both that f(n) is O(g(n)) and that f(n)
is Ω(g(n)). Consider how you would show that a function is big-O or big-Ω of
another function by looking at what integer values n can take on. Make sure you
prove this using the formal definition of big-Θ, not just an intuitive explanation.

Hint: You may want to simplify your function! This fun property of loga-
rithms might be helpful, ab loga n = nb.

2 Python Problems

In this case, we have checked for valid input for you, but make sure to do so on
your own in the future! Remember, empty lists are valid input!

How To Test and Run Your Code

For this homework and all subsequent python coding assignments, you will be
required to hand in a set of test cases for each python problem. You must
write your own test cases in addition to the example ones provided.
The example tests do not count as your own. You should use these tests
to confirm that your algorithms work as expected, but they will also be graded
according to how comprehensive they are. We will grade your tests by running
them against broken implementations of the problems. The more errors your
tests catch, the better. When writing tests, try to think of every possible edge
case and every kind of input that could be passed into your functions. Keep in
mind though that writing many tests which are similar will not earn a better
score. Quality over quantity!

We have provided three stencil test files in which you should write your tests:
arraysearch_test.py, arraylessthan_test.py, and maxword_test.py. These
files have a few example tests filled in to show you how to write your own. De-
fine new functions for your tests, naming them descriptively according to what
they are testing for. Fill in these functions with assert statements. assert

2



CS 16, Summer 2021 2 PYTHON PROBLEMS

takes in a conditional and a string. If the conditional is true, it continues. If it
is false, your code stops executing, an error is thrown, and the assert statement
string is printed to the console. It is fine for your testing functions to contain
multiple assert statements as long as they are all related (they should logically
fall under the same descriptive testing function name). As a rule of thumb, you
should write a new function for each different case you are testing for. Make
sure to follow the instructions in the stencil and add the name of each function
you write to the list in get_tests().

Examples:
assert max(1, 2) == 2, ‘Test 1 failed’ will pass
assert max(1, 2) == 1, ‘Test 2 failed’ will fail, causing your code to ter-
minate and ‘Test 2 failed’ to be logged

Running your tests: To run your code and your tests, you should run the
test files rather than the files in which you wrote your code. For example, to
run your arraysearch code, you should run arraysearch_test.py by typing
python3 arraysearch_test.py from your hw2 directory. Additionally, follow
this guide to install pytest if you do not already have it.

Problem 2.3

arraysearch

Overview

In arraysearch.py implement the array search method, which finds whether
an int is contained within an array.

Input/Output

You can assume your function will be tested on anything that fits within the
below definition for Input, but will not be tested on inputs that don’t fit within
the below input definition.

Input: An int and an array of numbers.

Output: A boolean that represent whether the int is contained within the
list of integers.

Example

array_search(3, [1, 3, 4]) -> True

array_search(3, [1, 2, 4]) -> False

Details

• You may not assume that the array is ordered.

3

https://docs.pytest.org/en/6.2.x/getting-started.html


CS 16, Summer 2021 2 PYTHON PROBLEMS

• Although not necessary, you are allowed to use Python indexing and
“slices” (as in array[2:4]) if you wish.

• You are not allowed to use python’s x in(array). While this is an awe-
some thing to know about (and you should definitely look at the docu-
mentation for it and use it in the future), it would make this problem
trivial.

Problem 2.4

arraylessthan

Overview

In arraylessthan.py implement the array less than method, which finds
whether each element of one list is strictly less than the corresponding element
in another list.

Input/Output

You can assume your function will be tested on anything that fits within the
below definition for Input, but will not be tested on inputs that don’t fit within
the below input definition.

Input: Two arrays of numbers, let’s call them arrays p and q, where p is
the first argument of array less than, and q is the second.

Output:

• If both input arrays contain the same number of elements, return a boolean
that represents whether each element of p is strictly less than the corre-
sponding element of q.

• If the number of the elements in the input arrays are not the same, return
False.

Example

array less than([0, 2, 2], [1, 3, 4]) -> True

array less than([1, 5, 3], [6, 8, 2]) -> False

Problem 2.5

maxword

Overview

In maxword.py implement the max word method, which, given a sentence, finds
the most used word in the sentence.

4



CS 16, Summer 2021 2 PYTHON PROBLEMS

Input/Output

You can assume your function will be tested on anything that fits within the
below definition for Input, but will not be tested on inputs that don’t fit within
the below input definition.

Input: A string.

Output: Returns the number of occurrences of the most common word in
the string.

Example

max word(‘‘hello world!’’) -> 1

max word(‘‘the quick brown fox jumped over the lazy dog’’) -> 2

Details

• You do not have to take into account punctuation or capital letters. All
words will be separated with spaces.

• Your solution must run in O(n) time

• In order to break up the string into individual words, you should look
into Python string manipulation. In particular, you will need to use the
built-in Python function string.split() (doc linked here). Look into what
this function does!

• Using the built-in Python dict datastructure will be very helpful. A dict
(short for dictionary) is a data structure that allows you to store an object
or value in relation to another object or value. We call this “mapping” a
key to a value. As an example, you can think of a real life dictionary as
a mapping between words and their definitions. In an upcoming lecture,
we will go into further detail on how dictionaries really work. Here is how
you instantiate and use a dictionary in Python:

my dictionary = {}
my dictionary[’hello’] = 1 #’hello’ is the key, 1 is the value
my dictionary[’world’] = 2

print my dictionary[’hello’] #prints 1
print my dictionary[’world’] #prints 2

For this problem, think about what you should use for keys and what
you should store in the dictionary

• You will also need to loop through your dictionary once you have filled it
in order to find the most common word(s). Read this documentation to
find out how to traverse your dictionary.

5

https://docs.python.org/3/library/stdtypes.html#str.split
https://docs.python.org/3.7/tutorial/datastructures.html?highlight=dictionary

	Written Problems
	Python Problems

