
2/2/2021

1

INTERESTED IN
CS RESEARCH?

- Getting involved with lab opportunities
- Applying for UTRAs
- Grad school advice + peer mentorship
- Research symposium, open house

CONTACT THE MURAS!

MURA@CS.BROWN.EDU
HOURS: FRIDAY 12-1PM EST
WEBSITE: UR.CS.BROWN.EDU

2 / 94
Andries van Dam © 2021 02/02/21

Lecture 4
Working with Objects:

Variables, Containment, and Association

3 / 94
Andries van Dam © 2021 02/02/21

This Lecture:

● Storing values in variables

● Methods that take in instances as

parameters

● Containment and association

relationships (how instances know about

other instances in the same program)

1

2

3

mailto:MURA@CS.BROWN.EDU
http://ur.cs.brown.edu/

2/2/2021

2

4 / 94
Andries van Dam © 2021 02/02/21

Review: Methods

● Call methods: give commands to an instance of a class

samBot.turnRight();

● Define methods: give a class specific capabilities

public void turnLeft() {

// code to turn Robot left goes here

}

5 / 94
Andries van Dam © 2021 02/02/21

Review: Constructors and Instances

● Declare a constructor (a method called whenever an

instance is “born”)

public Calculator() {

// code for setting up Calculator

}

● Create an instance of a class with the new keyword

new Calculator();

6 / 94
Andries van Dam © 2021 02/02/21

Review: Parameters and Arguments
● Define methods that take in parameters (input) and have

return values (output), e.g., this Calculator’s method:

public int add(int x, int y) {

// x, y are dummy (symbolic) variables
return (x + y);

}

● Call such methods on instances of a class by providing
arguments (actual values for symbolic parameters)

myCalculator.add(5, 8);

4

5

6

2/2/2021

3

7 / 94
Andries van Dam © 2021 02/02/21

Review: Classes

● Recall that classes are just blueprints

● A class gives a basic definition of an object we want to

model (one or more instances of that class)

● It tells the properties and capabilities of that object

● You can create any class you want and invent any

methods and properties you choose for it!

8 / 94
Andries van Dam © 2021 02/02/21

Review: Instantiation
● Instantiation means building an

instance from its class
o a class can be considered a

“blueprint,” where the capabilities of

the instance are defined through the

class’s methods

● Ex: new Robot(); creates an

instance of Robot by calling the

Robot class’ constructor (see

next slide)

The Robot
class

new Robot();

instance

9 / 94
Andries van Dam © 2021 02/02/21

Review: Constructors (1/2)

● A constructor is a

method that is called to

create a new instance

● Let’s define one for the

Dog class

● Let’s also add methods

for actions all Dogs know

how to do like bark, eat,

and wag their tails

public class Dog {

public Dog() {

// this is the constructor!

}

public void bark(int numTimes) {

// code for barking goes here

}

public void eat() {

// code for eating goes here

}

public void wagTail() {

// code for wagging tail goes here

}

}

7

8

9

2/2/2021

4

10 / 94
Andries van Dam © 2021 02/02/21

Review: Constructors (2/2)

● Note constructors do not

specify a return type

● Name of constructor

must exactly match

name of class

● Now we can instantiate

a Dog in some method:

new Dog();

public class Dog {

public Dog() {

// this is the constructor!

}

public void bark(int numTimes) {

// code for barking goes here

}

public void eat() {

// code for eating goes here

}

public void wagTail() {

// code for wagging tail goes here

}

}

11 / 94
Andries van Dam © 2021 02/02/21

Variables
● Once we create a Dog instance, we want to be able to give it

commands by calling methods on it!

● To do this, we need to name our Dog

● Can name an instance by storing it in a variable

Dog django = new Dog();
/* named after Django Reinhardt – see https://www.youtube.com/watch?v=plpSfvdCH0Q */

● In this case, django is the variable, and it stores a newly
created instance of Dog

o the variable name django is also known as an “identifier”

● Now we can call methods on django, a specific instance of Dog

o i.e. django.wagTail();

12 / 94
Andries van Dam © 2021 02/02/21

Syntax: Variable Declaration and Assignment
● To declare and assign a variable, thereby initializing it, in a single

statement is: Dog django = new Dog();

<type> <name> = <value>;

● The “=” operator assigns the instance of Dog that we created to the
variable django. We say “django gets a new Dog”

● Note: type of value must match declared type on left

● We can reassign as many times as we like (example soon)

declaration Instantiation, followed by assignment

10

11

12

https://www.youtube.com/watch?v=plpSfvdCH0Q

2/2/2021

5

13 / 94
Andries van Dam © 2021 02/02/21

Assignment vs. Equality

In Java:

price = price + 1;

• Means “add 1 to the
current value of price and
assign that to price.” We
shorthand this to
“increment price by 1”

In Algebra:

• price = price + 1 is a
logical contradiction

14 / 94
Andries van Dam © 2021 02/02/21

● A variable stores information as either:

o a value of a primitive (aka base) type (like int or float)

o a reference to an instance (like an instance of Dog) of an
arbitrary type stored elsewhere in memory

▪ we symbolize a reference with an arrow

● Think of the variable like a box; storing a value or
reference is like putting something into the box

● Primitives have a predictable memory size, while arbitrary
instances of classes vary in size. Thus, Java simplifies its
memory management by having a fixed size reference to
an instance elsewhere in memory

o “one level of indirection”

int favNumber = 9;

Dog django = new Dog();

favNumber

9

django

(somewhere else in memory)

Values vs. References

15 / 94
Andries van Dam © 2021 02/02/21

Lecture Question

Given this code, fill in the blanks:

Variable x stores a _____, and myCalc stores a _______.

A. value, value
B. value, reference
C. reference, value
D. reference, reference

int x = 5;
Calculator myCalc = new Calculator();

13

14

15

2/2/2021

6

16 / 94
Andries van Dam © 2021 02/02/21

Example: Instantiation (1/2)

public class PetShop {

public PetShop() {

this.testDjango();

}

public void testDjango() {

Dog django = new Dog();

django.bark(5);

django.eat();

django.wagTail();

}

}

● Let’s define a new class PetShop
which has a testDjango() method.

o don’t worry if the example

seems a bit contrived…

● Whenever someone instantiates a

PetShop, its constructor is called,

which calls testDjango(), which in

turn instantiates a Dog

● Then testDjango() tells the Dog to

bark, eat, and wag its tail (see

definition of Dog)

17 / 94
Andries van Dam © 2021 02/02/21

Another Example: Instantiation (2/2)
● Another example: can instantiate a

a MathStudent and then call that

instance to perform a simple, fixed,

calculation

● First, create new Calculator and

store its reference in variable named

myCalc

● Next, tell myCalc to add 2 to 6 and

store result in variable named

answer

● Finally, use System.out.println to

print value of answer to the console!

public class MathStudent {

/* constructor elided */

public void performCalculation() {
Calculator myCalc = new Calculator();
int answer = myCalc.add(2, 6);
System.out.println(answer);

}

/* add() method elided */
...

}

18 / 94
Andries van Dam © 2021 02/02/21

Instances as Parameters (1/3)

● Methods can take in not just

numbers but also instances as

parameters

● The DogGroomer class has a

method trimFur()

● trimFur method needs to know

which Dog instance to trim the fur of

● Method calling trimFur will have to

supply a specific instance of a Dog,

called shaggyDog in trimFur

public class DogGroomer {

public DogGroomer() {

// this is the constructor!

}

public void trimFur(Dog shaggyDog) {

// code that trims the fur of

shaggyDog

}

}

● Analogous to void moveForward(int numberOfSteps);

name of

specific

instance

type/class

Dog
trimFur()

PetShopDogGroomer

16

17

18

2/2/2021

7

19 / 94
Andries van Dam © 2021 02/02/21

● Where to call the DogGroomer’s
trimFur method?

● Do this in the PetShop method
testGroomer()

● PetShop’s call to
testGroomer() instantiates a
Dog and a DogGroomer, then
calls the DogGroomer to
trimFur of the Dog

● First two lines could be in either
order

public class PetShop {

public PetShop() {

this.testGroomer();

}

public void testGroomer() {

Dog django = new Dog();

DogGroomer groomer = new DogGroomer();

groomer.trimFur(django);

}

}

Instances as Parameters (2/3)

Dog PetShopDogGroomer

20 / 94
Andries van Dam © 2021 02/02/21

0. In App’s constructor, a PetShop is
instantiated (thereby calling
PetShop’s constructor). Then:

1. The PetShop in turn calls the
testGroomer() helper method,
which instantiates a Dog and stores
a reference to it in the variable
django

2. Next, it instantiates a
DogGroomer and stores a reference
to it in the variable groomer

3. The trimFurmethod is called
on groomer, passing in django as
an argument; the groomer will think
of it as shaggyDog, a synonym

public class App {

public App() {

new Petshop();

}

}

public class PetShop {

public PetShop() {

this.testGroomer();

}

public void testGroomer() {

Dog django = new Dog();

DogGroomer groomer = new DogGroomer();

groomer.trimFur(django);

//exit method, django and groomer disappear

}

}

1.

2.

3.

0.

Code

from

Slide

18

Instances as Parameters (3/3): Flow of Control

Dog

PetShop

DogGroomerApp

21 / 94
Andries van Dam © 2021 02/02/21

What is Memory?
● Memory (“system memory” aka

RAM, not disk or other peripheral
devices) is the hardware in which
computers store information during
computation

● Think of memory as a list of slots;
each slot holds information (e.g., an
int variable, or a reference to an
instance of a class)

● Here, two references are stored in
memory: one to a Dog instance,
and one to a DogGroomer instance

//Elsewhere in the program

Petshop petSmart = new Petshop();

public class PetShop {

public PetShop() {

this.testGroomer();

}

public void testGroomer() {

Dog django = new Dog();

DogGroomer groomer = new DogGroomer();

groomer.trimFur(django);

}

}

Dog PetShopDogGroomer

19

20

21

2/2/2021

8

22 / 94
Andries van Dam © 2021 02/02/21

Instances as Parameters: Under the Hood (1/6)

Somewhere in memory...

Note: Recall that in Java, each class is stored in its own file. Thus, when creating a program with multiple classes, the

program will work as long as all classes are written before the program is run. Order doesn’t matter.

public class PetShop {

public PetShop() {

this.testGroomer();

}

public void testGroomer() {

Dog django = new Dog();

DogGroomer groomer = new DogGroomer();

groomer.trimFur(django);

}

}

public class DogGroomer {

public DogGroomer() {

// this is the constructor!

}

public void trimFur(Dog shaggyDog) {

// code that trims the fur of shaggyDog goes

here!

}

}

23 / 94
Andries van Dam © 2021 02/02/21

Instances as Parameters: Under the Hood (2/6)
public class PetShop {

public PetShop() {

this.testGroomer();

}

public void testGroomer() {

Dog django = new Dog();

DogGroomer groomer = new DogGroomer();

groomer.trimFur(django);

}

}

public class DogGroomer {

public DogGroomer() {

// this is the constructor!

}

public void trimFur(Dog shaggyDog) {

// code that trims the fur of shaggyDog goes

here!

}

}

When we instantiate a Dog, he’s stored somewhere in memory. Our PetShop will use the

name django to refer to this particular Dog, at this particular location in memory.

Somewhere in memory...

24 / 94
Andries van Dam © 2021 02/02/21

Instances as Parameters: Under the Hood (3/6)
public class PetShop {

public PetShop() {

this.testGroomer();

}

public void testGroomer() {

Dog django = new Dog();

DogGroomer groomer = new DogGroomer();

groomer.trimFur(django);

}

}

Same goes for the DogGroomer—we store a particular DogGroomer somewhere in memory.

Our PetShop knows this DogGroomer by the name groomer.

public class DogGroomer {

public DogGroomer() {

// this is the constructor!

}

public void trimFur(Dog shaggyDog) {

// code that trims the fur of shaggyDog goes

here!

}

}

Somewhere in memory...

…
Usually not

adjacent in

memory!

22

23

24

2/2/2021

9

25 / 94
Andries van Dam © 2021 02/02/21

public class PetShop {

public PetShop() {

this.testGroomer();

}

public void testGroomer() {

Dog django = new Dog();

DogGroomer groomer = new DogGroomer();

groomer.trimFur(django);

}

}

Instances as Parameters: Under the Hood (4/6)

We call the trimFur method on our DogGroomer, groomer. We need to tell her which Dog to

trimFur (since the trimFur method takes in a parameter of type Dog). We tell her to trim django.

public class DogGroomer {

public DogGroomer() {

// this is the constructor!

}

public void trimFur(Dog shaggyDog) {

// code that trims the fur of shaggyDog goes

here!

}

}

Somewhere in memory...

…

26 / 94
Andries van Dam © 2021 02/02/21

public class PetShop {

public PetShop() {

this.testGroomer();

}

public void testGroomer() {

Dog django = new Dog();

DogGroomer groomer = new DogGroomer();

groomer.trimFur(django);

}

}

public class DogGroomer {

public DogGroomer() {

// this is the constructor!

}

public void trimFur(Dog shaggyDog) {

// code that trims the fur of shaggyDog goes

here!

}

}

Instances as Parameters: Under the Hood (5/6)

When we pass in django as an argument to the trimFur method, we’re telling the trimFur
method about him. When trimFur executes, it sees that it has been passed that particular Dog.

Somewhere in memory...

…

27 / 94
Andries van Dam © 2021 02/02/21

Instances as Parameters: Under the Hood (6/6)

The trimFur method doesn’t really care which Dog it’s told to trimFur—no matter what another

instance’s name for the Dog is, trimFur is going to know it by the name shaggyDog.

public class PetShop {

public PetShop() {

this.testGroomer();

}

public void testGroomer() {

Dog django = new Dog();

DogGroomer groomer = new DogGroomer();

groomer.trimFur(django);

}

}

public class DogGroomer {

public DogGroomer() {

// this is the constructor!

}

public void trimFur(Dog shaggyDog) {

// code that trims the fur of shaggyDog goes

here!

}

}

Somewhere in memory...

…

25

26

27

2/2/2021

10

28 / 94
Andries van Dam © 2021 02/02/21

Variable Reassignment (1/3)
● After giving a variable an initial

value or reference, we can

reassign it (make it refer to a

different instance)

● What if we wanted our

DogGroomer to trimFur two

different Dogs when the PetShop

opened?

● Could create another variable, or

re-use the variable django to first

point to one Dog, then another!

public class PetShop {

/* This is the constructor! */

public PetShop() {

this.testGroomer();

}

public void testGroomer() {

Dog django = new Dog();

DogGroomer groomer = new DogGroomer();

groomer.trimFur(django);

}

}

29 / 94
Andries van Dam © 2021 02/02/21

Variable Reassignment (2/3)
● First, instantiate another Dog,

and reassign variable django

to point to it

● Now django no longer refers to

the first Dog instance we

created, which was already

groomed

● Then tell groomer to trimFur

the newer Dog. It will also be

known as shaggyDog inside

the trimFur method

public class PetShop {

/* This is the constructor! */

public PetShop() {

this.testGroomer();

}

public void testGroomer() {

Dog django = new Dog();

DogGroomer groomer = new DogGroomer();

groomer.trimFur(django);

django = new Dog(); // reassign django

groomer.trimFur(django);

}

}

30 / 94
Andries van Dam © 2021 02/02/21

Variable Reassignment (3/3)

● When we reassign a variable, we do not declare its type again, Java
remembers from first time

● Can reassign to a brand new instance (like in PetShop) or to an already
existing instance by using its identifier

● Now django and scooby refer to the same Dog, specifically the one that
was originally scooby

Dog django = new Dog();
Dog scooby = new Dog();
django = scooby;

28

29

30

2/2/2021

11

31 / 94
Andries van Dam © 2021 02/02/21

public class PetShop {

/* This is the constructor! */

public PetShop() {

this.testGroomer();

}

public void testGroomer() {

Dog django = new Dog();

DogGroomer groomer = new DogGroomer();

groomer.trimFur(django);

django = new Dog();

groomer.trimFur(django);

}

}

Variable Reassignment: Under the Hood (1/5)

32 / 94
Andries van Dam © 2021 02/02/21

Variable Reassignment: Under the Hood (2/5)
public class PetShop {

/* This is the constructor! */

public PetShop() {

this.testGroomer();

}

public void testGroomer() {

Dog django = new Dog();

DogGroomer groomer = new DogGroomer();

groomer.trimFur(django);

django = new Dog();

groomer.trimFur(django);

}

}

33 / 94
Andries van Dam © 2021 02/02/21

Variable Reassignment: Under the Hood (3/5)
public class PetShop {

/* This is the constructor! */

public PetShop() {

this.testGroomer();

}

public void testGroomer() {

Dog django = new Dog();

DogGroomer groomer = new DogGroomer();

groomer.trimFur(django);

django = new Dog();

groomer.trimFur(django);

}

}

31

32

33

2/2/2021

12

34 / 94
Andries van Dam © 2021 02/02/21

Variable Reassignment: Under the Hood (4/5)
public class PetShop {

/* This is the constructor! */

public PetShop() {

this.testGroomer();

}

public void testGroomer() {

Dog django = new Dog();

DogGroomer groomer = new DogGroomer();

groomer.trimFur(django);

django = new Dog();

groomer.trimFur(django);

}

}

//old ref garbage collected – stay tuned!

35 / 94
Andries van Dam © 2021 02/02/21

Variable Reassignment: Under the Hood (5/5)
public class PetShop {

/* This is the constructor! */

public PetShop() {

this.testGroomer();

}

public void testGroomer() {

Dog django = new Dog();

DogGroomer groomer = new DogGroomer();

groomer.trimFur(django);

django = new Dog();

groomer.trimFur(django);

}

}

//old ref garbage collected – stay tuned!

36 / 94
Andries van Dam © 2021 02/02/21

Local Variables (1/2)
● All variables we’ve seen so

far have been local
variables: variables
declared inside a method

● Problem: the scope of a
local variable (where it is
known and can be
accessed) is limited to its
own method—it cannot be
accessed from anywhere
else

o same is true of method’s
parameters

public class PetShop {

/* This is the constructor! */

public PetShop() {

this.testGroomer();

}

public void testGroomer() {

Dog django = new Dog();

DogGroomer groomer = new DogGroomer();

groomer.trimFur(django);

django = new Dog();

groomer.trimFur(django);

}

}

local variables

34

35

36

2/2/2021

13

37 / 94
Andries van Dam © 2021 02/02/21

Local Variables (2/2)

● We created groomer and

django in our PetShop’s

helper method, but as far

as the rest of the class is

concerned, they don’t exist

● Once the method is

executed, they’re gone :(

o this is known as “Garbage

Collection”

public class PetShop {

/* This is the constructor! */

public PetShop() {

this.testGroomer();

}

public void testGroomer() {

Dog django = new Dog();

DogGroomer groomer = new DogGroomer();

groomer.trimFur(django);

django = new Dog();

groomer.trimFur(django);

}

}

local variables

38 / 94
Andries van Dam © 2021 02/02/21

“Garbage Collection”

● If an instance referred to by a variable goes

out of scope, we can no longer access it.

Because we can’t access the instance, it

gets garbage collected

o in garbage collection, the space that the instance

took up in memory is freed and the instance no

longer exists

●Lose access to an instance when:
o local variables go out of scope at the end of

method execution

o variables lose their reference to an instance

during variable reassignment (django, slide 35)

39 / 94
Andries van Dam © 2021 02/02/21

Accessing Local Variables

● If you try to access a local
variable outside of its
method, you’ll receive a
“cannot find symbol”
compilation error.

public class PetShop {

/* This is the constructor! */

public PetShop() {

DogGroomer groomer = new DogGroomer();

this.cleanShop();

}

public void cleanShop() {

//assume we’ve added a sweep method

//to DogGroomer

groomer.sweep();

//other methods to empty trash, etc.

}

}

In Terminal:
Petshop.java:13: error: cannot find symbol
groomer.sweep();

^
symbol: variable groomer
location: class PetShop

scope of groomer

37

38

39

2/2/2021

14

40 / 94
Andries van Dam © 2021 02/02/21

Introducing… Instance Variables!

● Local variables aren’t always what we want. We’d like every

PetShop to come with a DogGroomer who exists for as long as the

PetShop exists

● That way, as long as the PetShop is in business, we’ll have our

DogGroomer on hand

● We accomplish this by storing the DogGroomer in an instance

variable

● It may seem unnatural to have a PetShop contain a DogGroomer,

but it works in the kind of modeling that OOP makes possible – stay

tuned

41 / 94
Andries van Dam © 2021 02/02/21

What’s an Instance Variable?

● An instance variable models a property that all instances of
a class have

o its value can differ from instance to instance

● Instance variables are declared within a class, not within a
single method, and are accessible from anywhere within the
class – their scope is the entire class

● Instance variables and local variables are identical in terms of
what they can store—either can store a base type (like an
int) or a reference to an instance of some other class

42 / 94
Andries van Dam © 2021 02/02/21

Modeling Properties with Instance Variables (1/2)

● Methods model capabilities of a
class (e.g., move, dance)

● All instances of same class have
exact same methods (capabilities)
and the same properties

● BUT: the potentially differing values of
those properties can differentiate a
given instance from other instances of
the same class

● We use instance variables to model
these properties and their values
(e.g., the robot’s size, position,
orientation, color, …)

40

41

42

2/2/2021

15

43 / 94
Andries van Dam © 2021 02/02/21

● All instances of a class have same set of

properties, but values of these properties will

differ

● E.g. CS15Students might have property

“height”

o for one student, the value of “height” is 5’2”.

For another, it’s 6’4”

● CS15Student class would have an instance

variable to represent height

o value stored in this instance variable would

differ from instance to instance

Modeling Properties with Instance Variables (1/2)

44 / 94
Andries van Dam © 2021 02/02/21

When should I define an instance variable?

● In general, variables that fall into one of these three categories
should be instance variables of the class rather than local
variables within a method:

o attributes: simple descriptors of an instance, e.g., color, height, age, ...;
the next two categories encode relationships between instances

o components: “parts” that make up an instance. If you are modeling a car,
the car’s engine and doors will be used in multiple methods, so they
should be instance variables; ditto PetShop and its DogGroomer

o associations: a relationship between two instances in which one
instance knows about the other, but they are not necessarily part of each
other. For example, the instructor needs to know about TAs (more on this
soon), but the instructor is not a part of the TA class – they are peers.

● All methods in a class can access all its properties, to use them
and/or change them

45 / 94
Andries van Dam © 2021 02/02/21

Instance Variables (1/4)

● We’ve modified PetShop example to make our
DogGroomer an instance variable for the
benefit of multiple methods – yes, DogGroomer
here is considered a component (part) of the
PetShop

● Split up declaration and assignment of
instance variable:

o declare instance variable at the top of the class, to
notify Java compiler

o initialize the instance variable by assigning a value to
it in the constructor

o primary purpose of constructor is to initialize all
instance variables so the instance has a valid initial
“state” at its “birth”; it typically should do no other work

o state is the set of all values for all properties—local
variables don’t hold properties; they are “temporaries”

public class PetShop {

private DogGroomer _groomer;

/* This is the constructor! */

public PetShop() {

_groomer = new DogGroomer();

this.testGroomer();

}

public void testGroomer() {

Dog django = new Dog();//local var

_groomer.trimFur(django);

}

}

declaration

initialization

43

44

45

2/2/2021

16

46 / 94
Andries van Dam © 2021 02/02/21

● Note we include the keyword

private in declaration of our

instance variable

● private is an access modifier,

just like public, which we’ve

been using in our method

declarations

public class PetShop {

private DogGroomer _groomer;

/* This is the constructor! */

public PetShop() {

_groomer = new DogGroomer();

this.testGroomer();

}

public void testGroomer() {

Dog django = new Dog();//local var

_groomer.trimFur(django);

}

}

access modifier

Instance Variables (2/4)

47 / 94
Andries van Dam © 2021 02/02/21

● If declared as private, the method or

instance variable can only be accessed

inside the class – their scope is the

entire class

● If declared as public, can be accessed

from anywhere – their scope can

include multiple classes

● In CS15, you’ll declare instance

variables as private, with rare

exception!

● Note that local variables don’t have

access modifiers-- they always have the

same scope (their own method)

public class PetShop {

private DogGroomer _groomer;

/* This is the constructor! */

public PetShop() {

_groomer = new DogGroomer();

this.testGroomer();

}

public void testGroomer() {

Dog django = new Dog();//local var

_groomer.trimFur(django);

}

}

Instance Variables (3/4)
access modifier

48 / 94
Andries van Dam © 2021 02/02/21

● CS15 instance variable rules:

o start instance variable names with an

underscore to easily distinguish them

from local variables

o make all instance variables private so

they can only be accessed from within

their own class!

o encapsulation for safety…your

properties are your private business.

We will also show you safe ways of

allowing other classes to have selective

access to designated properties… stay

tuned.

public class PetShop {

private DogGroomer _groomer;

/* This is the constructor! */

public PetShop() {

_groomer = new DogGroomer();

this.testGroomer();

}

public void testGroomer() {

Dog django = new Dog();//local var

_groomer.trimFur(django);

}

}

Instance Variables (4/4)

46

47

48

2/2/2021

17

49 / 94
Andries van Dam © 2021 02/02/21

Always Remember to Initialize!
● What if you declare an instance

variable, but forget to initialize it?

What if you don’t supply a

constructor and your instance

variables are not initialized?

● The instance variable will assume a

“default value”

o if it’s an int, it will be 0

o if it’s an instance, it will be null— a

special value that means your

variable is not referencing any

instance at the moment

public class PetShop {

private DogGroomer _groomer;

/* This is the constructor! */

public PetShop() {

//oops! Forgot to initialize _groomer

this.testGroomer();

}

public void testGroomer() {

Dog django = new Dog();//local var

_groomer.trimFur(django);

}

}

50 / 94
Andries van Dam © 2021 02/02/21

NullPointerExceptions
● If a variable’s value is null and

you try to give it a command,

you’ll be rewarded with a

runtime error—you can’t call a

method on “nothing”!

● _groomer’s default value is

null so this particular error

yields a NullPointerException

● When you run into one of these

(we promise, you will), make

sure all variables have been

explicitly initialized, preferably in

the constructor, and none are

initialized as null

public class PetShop {

private DogGroomer _groomer;

public PetShop() {

//oops! Forgot to initialize _groomer

this.testGroomer();

}

public void testGroomer() {

Dog django = new Dog(); //local var

_groomer.trimFur(django);

}

}

NullPointerException

51 / 94
Andries van Dam © 2021 02/02/21

Instance Variables Example (1/2)

● Let’s add an instance

variable to the Dog class

● _furLength stores an int

that keeps track of the length

of a Dog’s fur

● _furLength is assigned a

default initial value of 3 in the

constructor – it can be

changed later, of course

public class Dog {

private int _furLength;

public Dog() {

_furLength = 3;

}

/* bark, eat, and wagTail

elided */

}

49

50

51

2/2/2021

18

52 / 94
Andries van Dam © 2021 02/02/21

Instance Variables Example (2/2)

● _furLength is a private

instance variable— only

accessible within Dog class

● What if another instance

needs to know or change the

value of _furLength?

● When a DogGroomer trims

the fur of a Dog, it needs to

update _furLength

public class Dog {

private int _furLength;

public Dog() {

_furLength = 3; /* all dogs

have the same furLength

initially */

}

/* bark, eat, and wagTail elided */

}

53 / 94
Andries van Dam © 2021 02/02/21

Accessors / Mutators (1/3)
public class Dog {

private int _furLength;

public Dog() {

_furLength = 3;

}

public int getFurLength() {

return _furLength;

}

/* bark, eat, and wagTail elided */

}

● A class may make the value of an

instance variable publicly available

via an accessor method that

returns the value when called

● getFurLength is an accessor

method for _furLength

● Can call getfurLength on an

instance of Dog to return its current

_furLength value

● Remember: return type specified

and value returned must match!

return type is int

value returned, type int

54 / 94
Andries van Dam © 2021 02/02/21

Accessors / Mutators (2/3)
public class Dog {

private int _furLength;

public Dog() {

_furLength = 3;

}

public int getFurLength() {

return _furLength;

}

public void setFurLength(int furLength) {

_furLength = furLength;

}

/* bark, eat, and wagTail elided */

}

● Similarly, a class may define a

mutator method which allows

another class to change the

value of some instance variable

● setFurLength is a mutator

method for _furLength

● Another instance can call

setFurLength on a Dog to

change the value stored in

_furLength

52

53

54

2/2/2021

19

55 / 94
Andries van Dam © 2021 02/02/21

Accessors / Mutators (3/3)

● Fill in DogGroomer’s trimFur

method to modify furLength of

the Dog it is trimming the fur of

● When a DogGroomer trims the

fur of a dog, it calls the mutator

setFurLength on the Dog and

passes in 1 as an argument

public class DogGroomer {

public DogGroomer() {

// this is the constructor!

}

public void trimFur(Dog shaggyDog) {

shaggyDog.setFurLength(1);

}

}

56 / 94
Andries van Dam © 2021 02/02/21

public class PetShop {

private DogGroomer _groomer;

public PetShop() {

_groomer = new DogGroomer();

this.testGroomer();

}

public void testGroomer() {

Dog django = new Dog();

System.out.println(django.getFurLength());

_groomer.trimFur(django);

System.out.println(django.getFurLength());

}

}

public class DogGroomer {

public DogGroomer() {

// this is the constructor!

}

public void trimFur(Dog shaggyDog) {

shaggyDog.setFurLength(1);

}

}

Check that the trimFur method works by printing out the Dog’s

_furLength before and after we send it to the groomer

Example: Accessors (1/2)

We use the accessor getFurLength to

retrieve the value django stores in its

_furLength instance variable

57 / 94
Andries van Dam © 2021 02/02/21

public class PetShop {

private DogGroomer _groomer;

public PetShop() {

_groomer = new DogGroomer();

this.testGroomer();

}

public void testGroomer() {

Dog django = new Dog();

System.out.println(django.getFurLength());

_groomer.trimFur(django);

System.out.println(django.getFurLength());

}

}

public class DogGroomer {

public DogGroomer() {

// this is the constructor!

}

public void trimFur(Dog shaggyDog) {

shaggyDog.setFurLength(1);

}

}

● What values print out to the console?

Example: Accessors (2/2)

o first, 3 is printed because 3 is the initial value we assigned to _furLength in

the Dog constructor (slide 54)

o next, 1 prints out because groomer just set django’s _furLength to 1

Code from previous
slide!

55

56

57

2/2/2021

20

58 / 94
Andries van Dam © 2021 02/02/21

public class PetShop {

// Constructor elided

public void testGroomer() {

Dog django = new Dog();

_groomer.trimFur(django, 2);

}

}

public class DogGroomer {

/* Constructor and other code elided */

public void trimFur(Dog shaggyDog, int furLength) {

shaggyDog.setFurLength(furLength);

}

}

● What if we don’t always want to trim the dog’s fur to a value of 1?

● When we tell groomer to trimFur, let’s also tell groomer the length to trim the dog’s fur

● groom will take in a second parameter, and set dog’s fur length to the passed-in

value of furLength (note Dog doesn’t error check to make sure that furLength

passed in is less than current value of furLength)

● Now pass in two parameters when calling trimFur so _groomer knows how much

furLength should be after trimming fur

The groomer will trim the fur to

a furLength of 2!

Example: Mutators

59 / 94
Andries van Dam © 2021 02/02/21

Summary of Accessors/Mutators

● Instance variables should always be declared private for safety, and should
be declared at the top of class definition
o but classes may want to offer useful functionality that allows access to

selective properties (instance variables).

● If we made such instance variables public, any method could change them,
i.e., with the caller in control of the inquiry or change – this is totally unsafe

● Instead the class can provide accessors/mutators (often in pairs, but not
always) which give the class control over how the variable is queried or
altered.

60 / 94
Andries van Dam © 2021 02/02/21

Containment and Association
● Key to OOP: how are different classes related to each other so their instances can

communicate to collaborate?

● Relationships established via containment or association

● Often a class A will need as a component an instance of class B, stored in an instance
variable. A will create the instance of B by using the new keyword. We say A contains that
instance of class B. Thus A knows about B and can call methods on it. Note this is not
symmetrical: B can’t call methods on A!

o thus a car can call methods of a contained engine but the engine can’t call methods on
the car

● At other times, a class C will need to “know about” an instance of class D, where the instance
of class D is not created by class C. An instance of class D is passed into the constructor of
class C as an argument. We say that C and D are associated with each other. This is also
non-symmetric: D doesn’t automatically know about C.

o can make association symmetric by separately telling D to be associated with C

● This is all very abstract… Let’s see code!

58

59

60

2/2/2021

21

61 / 94
Andries van Dam © 2021 02/02/21

Example: Containment

● PetShop contains a DogGroomer
instance

● Containment relationship because
PetShop itself instantiates a

DogGroomer instance _groomer with

“new DogGroomer();”

● Since PetShop created a DogGroomer
and stored it in an instance variable, all
PetShop’s methods “know” about the

_groomer and can access it

public class PetShop {

private DogGroomer _groomer;

public PetShop() {//constructor

_groomer = new DogGroomer();

this.testGroomer();

}

public void testGroomer() {

Dog django = new Dog();//local var

_groomer.trimFur(django);

}

}

62 / 94
Andries van Dam © 2021 02/02/21

Association (1/8)

● Now let’s set up an

association!

● Association means an

instance of one class

“knows about” an

instance of another class

that is not one of its

components

public class DogGroomer {

public DogGroomer() {

// this is the constructor!

}

public void trimFur(Dog shaggyDog) {

shaggyDog.setFurLength(1);

}

}

Prior

DogGroomer

code

63 / 94
Andries van Dam © 2021 02/02/21

Motivation for Association (2/8)

● As noted, PetShop contains a
DogGroomer, so it can send
messages to the DogGroomer

● But what if the DogGroomer
needs to send messages to
the PetShop she works in?

o the DogGroomer probably needs
to know several things about
her PetShop: for example,
operating hours, grooming
supplies in stock, customers
currently in the shop...

public class DogGroomer {

public DogGroomer() {

// this is the constructor!

}

public void trimFur(Dog shaggyDog) {

shaggyDog.setFurLength(1);

}

}

Prior

DogGroomer

code

61

62

63

2/2/2021

22

64 / 94
Andries van Dam © 2021 02/02/21

Association (3/8)

● The PetShop keeps track of

such information in its

properties (not shown here)

● We can set up an association

so DogGroomer can send her

PetShop messages to retrieve

information from it as needed

public class DogGroomer {

public DogGroomer() {

// this is the constructor!

}

public void trimFur(Dog shaggyDog) {

shaggyDog.setFurLength(1);

}

}

Prior

DogGroomer

code

65 / 94
Andries van Dam © 2021 02/02/21

Example: Setting up the Association (4/8)

● To set up the association, we

must modify DogGroomer to

store the knowledge of the

_petShop

● To set it up, declare an instance

variable named _petShop in the

DogGroomer

● But how to initialize this instance

variable? Such initialization

should be done in DogGroomer’s

constructor

public class DogGroomer {

private PetShop _petShop;

public DogGroomer() {

_petShop = ???

}

public void trimFur(Dog shaggyDog) {

shaggyDog.setFurLength(1);

}

}

PetShop myPetShop

66 / 94
Andries van Dam © 2021 02/02/21

public class DogGroomer {

private PetShop _petShop;

public DogGroomer() {

_petShop = myPetShop; // store the assoc.

}

//trimFur method elided

}

public class PetShop {

private DogGroomer _groomer;

public PetShop() {

_groomer = new DogGroomer();

this.testGroomer();

}

public void testGroomer() {

Dog django = new Dog();//local var

_groomer.trimFur(django);

}

}

● We modify DogGroomer’s

constructor to take in a

parameter of type PetShop

● Constructor will refer to it by

the name myPetShop. To

“remember” the passed

argument, the constructor

stores it in the _petShop

instance variable

PetShop myPetShop

Example: Setting up the Association (5/8)

Code

from
previous

slides

64

65

66

2/2/2021

23

67 / 94
Andries van Dam © 2021 02/02/21

● What argument should
DogGroomer’s constructor
store in _petShop?

o The PetShop instance
that created the
DogGroomer

● How?

o By passing this as the
argument

▪ i.e., the PetShop tells the
DogGroomer about itself

public class DogGroomer {

private PetShop _petShop;

public DogGroomer(PetShop myPetShop) {

_petShop = myPetShop; // store the assoc.

}

//trimFur method elided

}

public class PetShop {

private DogGroomer _groomer;

public PetShop() {

_groomer = new DogGroomer();

this.testGroomer();

}

public void testGroomer() {

Dog django = new Dog();//local var

_groomer.trimFur(django);

}

}

Code

from
previous

slides

this

Example: Setting up the Association (6/8)

68 / 94
Andries van Dam © 2021 02/02/21

Example: Setting up the Association (7/8)
● Now, the instance variable,

_petShop, records the instance of
PetShop, called myPetShop, that
the DogGroomer belongs to

● _petShop now points to same
PetShop instance passed to its
constructor

● After constructor has been
executed and can no longer
reference myPetShop, any
DogGroomer method can still
access same PetShop instance by
the name _petShop

public class DogGroomer {

private PetShop _petShop;

public DogGroomer(PetShop myPetShop) {

_petShop = myPetShop; // store the assoc.

}

public void trimFur(Dog shaggyDog) {

shaggyDog.setFurLength(1);

}

}

69 / 94
Andries van Dam © 2021 02/02/21

Example: Using the Association (8/8)

● Let’s say we’ve written an accessor
method and a mutator method in
the PetShop class:
getClosingTime() and
setNumCustomers(int customers)

● If the DogGroomer ever needs to
know the closing time, or needs to
update the number of customers,
she can do so by calling

o getClosingTime()

o setNumCustomers(int customers)

public class DogGroomer {

private PetShop _petShop;

private Time _closingTime;

public DogGroomer(PetShop myPetShop) {

_petShop = myPetShop; // store assoc.

_closingTime = _petShop.getClosingTime();

_petShop.setNumCustomers(20);

}

}

67

68

69

2/2/2021

24

70 / 94
Andries van Dam © 2021 02/02/21

public class PetShop {

private DogGroomer _groomer;

public PetShop() {

_groomer = new DogGroomer(this);

this.testGroomer();

}

public void testGroomer() {

Dog django = new Dog();

_groomer.trimFur(django);

}

}

public class DogGroomer {

private PetShop _petShop;

public DogGroomer(PetShop myPetShop) {

_petShop = myPetShop;

}

/* trimFur and other methods elided for this

example */

}

Somewhere in memory...

Association: Under the Hood (1/5)

71 / 94
Andries van Dam © 2021 02/02/21

public class PetShop {

private DogGroomer _groomer;

public PetShop() {

_groomer = new DogGroomer(this);

this.testGroomer();

}

public void testGroomer() {

Dog django = new Dog();

_groomer.trimFur(django);

}

}

public class DogGroomer {

private PetShop _petShop;

public DogGroomer(PetShop myPetShop) {

_petShop = myPetShop;

}

/* trimFur and other methods elided for this

example */

}

Somewhere in memory...

Association: Under the Hood (2/5)

Somewhere else in our code, someone calls new PetShop(). An instance of PetShop is created somewhere in

memory and PetShop’s constructor initializes all its instance variables (just a DogGroomer here)

72 / 94
Andries van Dam © 2021 02/02/21

public class PetShop {

private DogGroomer _groomer;

public PetShop() {

_groomer = new DogGroomer(this);

this.testGroomer();

}

public void testGroomer() {

Dog django = new Dog();

_groomer.trimFur(django);

}

}

public class DogGroomer {

private PetShop _petShop;

public DogGroomer(PetShop myPetShop) {

_petShop = myPetShop;

}

/* trimFur and other methods elided for this

example */

}

Somewhere in memory...

Association: Under the Hood (3/5)

The PetShop instantiates a new DogGroomer, passing itself in as an argument to the DogGroomer’s constructor

(remember the this keyword?)

…

70

71

72

2/2/2021

25

73 / 94
Andries van Dam © 2021 02/02/21

public class PetShop {

private DogGroomer _groomer;

public PetShop() {

_groomer = new DogGroomer(this);

this.testGroomer();

}

public void testGroomer() {

Dog django = new Dog();

_groomer.trimFur(django);

}

}

public class DogGroomer {

private PetShop _petShop;

public DogGroomer(PetShop myPetShop) {

_petShop = myPetShop;

}

/* trimFur and other methods elided for this

example */

}

Association: Under the Hood (4/5)

When the DogGroomer’s constructor is called, its parameter, myPetShop, points to the same PetShop that was

passed in as an argument by the caller, i.e., the PetShop itself

Somewhere in memory...

…

74 / 94
Andries van Dam © 2021 02/02/21

public class PetShop {

private DogGroomer _groomer;

public PetShop() {

_groomer = new DogGroomer(this);

this.testGroomer();

}

public void testGroomer() {

Dog django = new Dog();

_groomer.trimFur(django);

}

}

public class DogGroomer {

private PetShop _petShop;

public DogGroomer(PetShop myPetShop) {

_petShop = myPetShop;

}

/* trimFur and other methods elided for this

example */

}

Somewhere in memory...

Association: Under the Hood (5/5)

The DogGroomer sets its _petShop instance variable to point to the same PetShop it received as an argument

(see slide 68!). Now it “knows about” the PetShop that instantiated it, and so do all its methods

…

75 / 94
Andries van Dam © 2021 02/02/21

Lecture Question

public class School {
private Teacher _teacher;

public School() {
_teacher = new Teacher(this);

}
//additional methods, some using
//_teacher

}

public class Teacher {
private School _school;

public Teacher(School school) {
_school = school;

}
//additional methods, some using
// _school

}

Which of the following statements is correct, given the code below that establishes an association from
Teacher to School?

A. School can send messages to Teacher, but Teacher cannot send messages to School
B. Teacher can send messages to School, but School cannot send messages to Teacher
C. School can send messages to Teacher, and Teacher can send messages to School
D. Neither School nor Teacher can send messages to each other

73

74

75

2/2/2021

26

76 / 94
Andries van Dam © 2021 02/02/21

Lecture Question Review

● Does School contain Teacher?
o yes! School instantiated Teacher, therefore School contains a Teacher.
Teacher is a component of School

● Can School send messages to Teacher?
o yes! School can send messages to all its components that it created

● Does Teacher contain School?
o no! Teacher knows about School that created it, but does not contain it
o but can send messages to School because it “knows about” School

public class School{
private Teacher _teacher;

public School() {
_teacher = new Teacher(this);

}
//additional methods, some using
//_teacher

}

public class Teacher{
private School _school;

public Teacher(School school) {
_school = school;

}
//additional methods, some using
// _school

}

77 / 94
Andries van Dam © 2021 02/02/21

Another Example: Association (1/6)
public class CS15Professor {

// declare instance variables here
// and here…
// and here…
// and here!

public CS15Professor(/* parameters */) {

// initialize instance variables!
// …
// …
// …

}

/* additional methods elided */
}

● Here we have the class
CS15Professor

● We want CS15Professor to

know about his Head Tas─he

didn’t create them or vice

versa, hence no containment

● And we also want Head TAs

to know about
CS15Professor

● Let’s set up associations!

78 / 94
Andries van Dam © 2021 02/02/21

Another Example: Association (2/6)
public class CS15Professor {

// declare instance variables here
// and here…
// and here…
// and here!

public CS15Professor(/* parameters */) {

// initialize instance variables!
// …
// …
// …

}

/* additional methods elided */
}

● The CS15Professor needs

to know about 5 Head TAs,

all of whom will be instances

of the class HeadTA

● Once he knows about them,

he can call methods of the

class HeadTA on them:

remindHeadTA,

setUpLecture, etc.

● Take a minute and try to fill

in this class

76

77

78

2/2/2021

27

79 / 94
Andries van Dam © 2021 02/02/21

Another Example: Association (3/6)
public class CS15Professor {

private HeadTA _hta1;
private HeadTA _hta2;
private HeadTA _hta3;
private HeadTA _hta4;
private HeadTA _hta5;

public CS15Professor(HeadTA firstTA,
HeadTA secondTA, HeadTA thirdTA
HeadTA fourthTA, HeadTA fifthTA) {

_hta1 = firstTA;
_hta2 = secondTA;
_hta3 = thirdTA;
_hta4 = fourthTA;
_hta5 = fifthTA;

}

/* additional methods elided */
}

● Here’s our solution!

● Remember, you can

choose your own names for

the instance variables and

parameters

● The CS15Professor can

now send a message to

one of his HeadTAs like

this:

_hta2.setUpLecture();

80 / 94
Andries van Dam © 2021 02/02/21

public class CS15App {

// declare CS15Professor instance var
// declare five HeadTA instance vars
// …
// …
// …

public CS15App() {
// instantiate the professor!
// …
// …
// instantiate the five HeadTAs

}
}

● We’ve got the CS15Professor
class down

● Now let’s create a professor
and head TAs from a class that
contains all of them: CS15App

● Try and fill in this class!

o you can assume that the HeadTA
class takes no parameters in its
constructor

Another Example: Association (4/6)

81 / 94
Andries van Dam © 2021 02/02/21

public class CS15App {

private CS15Professor _andy;
private HeadTA _aalia;
private HeadTA _anna;
private HeadTA _gil;
private HeadTA _marina;
private HeadTA _will;

public CS15App() {
_aalia = new HeadTA();
_anna = new HeadTA();
_gil = new HeadTA();
_marina = new HeadTA();
_will = new HeadTA();
_andy = new CS15Professor(_aalia,

_anna, _gil,_marina, _will);
}

}

● We declare _andy, _aalia,

_anna, _gil, _marina, and

_will as instance variables

● In the constructor, we

instantiate them

● Since the constructor of

CS15Professor takes in 5

HeadTAs, we pass in _aalia,

_anna, _gil, _marina, and

_will

Another Example: Association (5/6)

79

80

81

2/2/2021

28

82 / 94
Andries van Dam © 2021 02/02/21

Another Example: Association (6/6)
public class CS15App {

private CS15Professor _andy;
private HeadTA _aalia;
private HeadTA _anna;
private HeadTA _gil;
private HeadTA _marina;
private HeadTA _will;

public CS15App() {
_aalia = new HeadTA();
_anna = new HeadTA();
_gil = new HeadTA();
_marina = new HeadTA();
_will = new HeadTA();
_andy = new CS15Professor(_aalia,

_anna, _gil,_marina, _will);
}

}

public class CS15Professor {

private HeadTA _hta1;
private HeadTA _hta2;
private HeadTA _hta3;
private HeadTA _hta4;
private HeadTA _hta5;

public CS15Professor(HeadTA firstTA,
HeadTA secondTA, HeadTA thirdTA
HeadTA fourthTA, HeadTA fifthTA) {

_hta1 = firstTA;
_hta2 = secondTA;
_hta3 = thirdTA;
_hta4 = fourthTA;
_hta5 = fifthTA;

}

/* additional methods elided */
}

83 / 94
Andries van Dam © 2021 02/02/21

More Associations (1/5)

● Now the CS15Professor

can call on the HeadTAs but

can the HeadTAs call on the

CS15Professor too?

● NO: Need to set up another

association

● Can we just do the same

thing and pass _andy as a

parameter into each

HeadTAs constructor?

public class CS15App {

private CS15Professor _andy;
private HeadTA _aalia;
private HeadTA _anna;
private HeadTA _gil;
private HeadTA _marina;
private HeadTA _will;

public CS15App() {
_aalia = new HeadTA();
_anna = new HeadTA();
_gil = new HeadTA();
_marina = new HeadTA();
_will = new HeadTA();
_andy = new CS15Professor(_aalia,

_anna, _gil,_marina, _will);
}

}

Code

from
previous

slide

84 / 94
Andries van Dam © 2021 02/02/21

● When we instantiate _aalia,

_anna, _gil, _marina, and

_will, we would like to use a

modified HeadTA constructor that

takes an argument, _andy

● But _andy hasn’t been

instantiated yet (will get a

NullPointerException)! And we

can’t initialize _andy first because

the HeadTAs haven’t been

created yet…

● How to break this deadlock?

public class CS15App {

private CS15Professor _andy;
private HeadTA _aalia;
private HeadTA _anna;
private HeadTA _gil;
private HeadTA _marina;
private HeadTA _will;

public CS15App() {
_aalia = new HeadTA();
_anna = new HeadTA();
_gil = new HeadTA();
_marina = new HeadTA();
_will = new HeadTA();
_andy = new CS15Professor(_aalia,

_anna, _gil,_marina, _will);
}

}

Code

from
previous

slide

More Associations (2/5)

82

83

84

2/2/2021

29

85 / 94
Andries van Dam © 2021 02/02/21

● Instantiate _aalia, _anna,

_gil, _marina, and _will
before we instantiate _andy

● Use a new method (mutator),

setProf, and pass _andy to

each HeadTA

public class CS15App {

private CS15Professor _andy;
private HeadTA _aalia;
private HeadTA _anna;
private HeadTA _gil;
private HeadTA _marina;
private HeadTA _will;

public CS15App() {
_aalia = new HeadTA();
_anna = new HeadTA();
_gil = new HeadTA();
_marina = new HeadTA();
_will = new HeadTA();
_andy = new CS15Professor(_aalia,

_anna, _gil, _marina, _will);

_aalia.setProf(_andy);
_anna.setProf(_andy);
_gil.setProf(_andy);
_marina.setProf(_andy);
_will.setProf(_andy);

}
}

More Associations (3/5)

86 / 94
Andries van Dam © 2021 02/02/21

public class HeadTA {

private CS15Professor _professor;

public HeadTA() {

//Other code elided

}

public void setProf(CS15Professor prof) {
_professor = prof;

}
}

● Now each HeadTA will know

about _andy!

public class CS15App {

private CS15Professor _andy;
private HeadTA _aalia;
private HeadTA _anna;
private HeadTA _gil;
private HeadTA _marina;
private HeadTA _will;

public CS15App() {
_aalia = new HeadTA();
_anna = new HeadTA();
_gil = new HeadTA();
_marina = new HeadTA();
_will = new HeadTA();
_andy = new CS15Professor(_aalia,
_anna, _gil, _marina, _will);

_aalia.setProf(_andy);
_anna.setProf(_andy);
_gil.setProf(_andy);
_marina.setProf(_andy);
_will.setProf(_andy);

}
}

More Associations (4/5)

87 / 94
Andries van Dam © 2021 02/02/21

● But what happens if setProf is never called?

● Will the Head TAs be able to call methods on the

CS15Professor?

● No! We would get a NullPointerException!

● So this is not a completely satisfactory solution, but we

will learn more tools soon that will allow us to develop a

more complete solution

More Associations (5/5)

85

86

87

2/2/2021

30

88 / 94
Andries van Dam © 2021 02/02/21

Visualizing Containment and Association

CS15App

CS15Professor HeadTA

“contains one

instance of”

“contains more than

one instance of”

“knows about”

89 / 94
Andries van Dam © 2021 02/02/21

Summary
Important concepts:

● Using local variables, whose scope is limited to a method

● Using instance variables, which store the properties of instances of a

class for use by multiple methods—use them only for that purpose

● A variable that “goes out of scope” is garbage collected

o for a local variable when the method ends

o for an instance when the last reference to it is deleted

● Containment: when one instance is a component of another class so

the container can therefore send messages to the component it created

● Association: when one class knows about an instance of a different

class that is not one of its components—has to be set up explicitly

90 / 94
Andries van Dam © 2021 02/02/21

Announcements

● Lab1: Java Objects begins today!

o If you have not received an email about your permanent

section time please contact the HTAs ASAP

o Check out the website for the pre-section work

▪ Pre-Lab video and video quiz (for before your section time)

▪ SRC Pre-Section Reading (one page with a lab activity preview!)

● AndyBot due Thursday 2/4 at 11:59 p.m. EST

o No late hand in date! Make sure you submit AndyBot on time!

88

89

90

2/2/2021

31

91 / 94
Andries van Dam © 2021 02/02/21

IT in the News
ft. Socially Responsible Computing!

92 / 94
Andries van Dam © 2021 02/02/21

Talk: Fairness and Bias in Algorithmic Decision-Making

Jon Kleinberg,

Cornell University

Wednesday February 3,

12:00pm - 1:00pm

More Info:

https://sites.google.com/view/seam-
seminar/home

Zoom Link:

https://brown.zoom.us/j/91038690385

Abstract: As algorithms trained via

machine learning are increasingly
used as a component of screening

decisions in areas such as hiring,

lending, and education, discussion

in the public sphere has turned to

the question of what it means for
algorithmic classification to be fair

to different groups. We consider

several of the key fairness conditions

that lie at the heart of these

debates, and discuss recent research
on trade-offs and interventions

through the lens of these conditions.

We also explore how the complexity

of a classification rule interacts with

its fairness properties, showing how
natural ways of approximating a

classifier via a simpler rule can lead

to unintended biases in the

outcome.

93 / 94
Andries van Dam © 2021 02/02/21

Who Owns the News? (1/2)

● For years, Google has provided automatically-

generated article previews in search results –

without paying publishers

● January 21, 2021:
○ Google agrees to pay publishers in France for content

linked via search

○ but refuses similar law in Australia: threatens to block

search, retaliate against Australian media

▪ Facebook backs Google in aggressive response

● Same day, opposite response: why?
○ power: French agreement lets Google set terms,

Australian involves independent arbiter

○ money: threatens Google’s business model

▪ based on tracking clicks, adding ads to search

results, collecting data (e.g., to profile and

microtarget) and selling data to third parties

Melanie Silva, Managing Director of Google

AU & NZ, appears at Australian Senate inquiry
image source: NYT, Jan 21, 2021

News “cards”/“previews” in Google Search results

91

92

93

https://sites.google.com/view/seam-seminar/home
https://brown.zoom.us/j/91038690385

2/2/2021

32

94 / 94
Andries van Dam © 2021 02/02/21

Who Owns the News? (2/2)
● What’s at stake?

○ future of news media & publishing
■ newspaper & magazine readership & revenue have dropped

catastrophically, threatening journalism

o “fake news” → serious change in trust of news publications

■ Google & Facebook previews discourage click-through, decreasing

publisher revenue

○ free & open Internet (possibly)
■ dissenters to Australia law include Sir Tim Berners-Lee (WWW)

● Should Google be able to deny Search to an entire country?

○ what does this say about their power?

○ what does this say about your power (as CS students)?

● What responsibilities do governments have in regulating (or

not) Big Tech?

○ Trump and Biden on same side?!? (re: Section 230 of Communications

Decency Act of 1996)

● Next time: what responsibilities do platforms have for

content appearing on their sites?

“The ability to link freely --

meaning without limitations

regarding the content

of the linked site and without

monetary fees -- is fundamental to

how the web operates.”
– Sir Tim Berners-Lee (founded WWW)

“What Google returns is more of a

media-rich, detailed preview than

a simple link….This can obviously

decrease revenue for news

providers, as well as perpetuate

misinformation.”
– Tama Leaver, professor of Internet

Studies, Curtin University (Perth, AU)

94

