
Andries van Dam © 2024 9/24/24 1/80

ATA
● ATA is an AI-powered teaching assistant designed for CS15, available 24/7 as a first

line of defense

o this means that whenever you have a problem, ATA will always be available to you!

o it does not mean that if ATA is unable to help you with your problem, you should give up – we

have many other resources available to get you the help that you need.

● ATA is experimental. Sometimes it can be frustrating, or incorrect — but give it a chance!

● Ask any course-related questions you have! Please don’t intentionally manipulate ATA or

ask it unrelated questions

o we look at your conversations to HELP you – understand the common confusions in course

content (like how we look at Ed)

● Your usage and feedback will help tune both CS15 and ATA

● ATA is a supplement for Ed and Office hours, not a replacement.

Andries van Dam © 2024 9/24/24 2/80

Lecture 6
Interfaces and Polymorphism

Andries van Dam © 2024 9/24/24 3/80

Outline

● Transportation Example

● Intro to Interfaces

● Implementing Interfaces

● Polymorphism

Andries van Dam © 2024 9/24/24 4/80

Review: Association

● Association allows us to create a “knows about”
relationships between different classes

● In association, one instance of a class knows about an
instance of another peer class and can call methods on it

● Association is a consequences of delegating
responsibilities to other classes

o they are design choices, not Java constructs, and require no
new syntax

Andries van Dam © 2024 9/24/24 5/80

Outline

● Transportation Example

● Intro to Interfaces

● Implementing Interfaces

● Polymorphism

Andries van Dam © 2024 9/24/24 6/80

Using What You Know

● Problem Statement:
o Chloe and Karim are racing from their dorms to the CIT

▪ whoever gets there first, wins!

▪ catch: they don’t get to choose their method of transportation

● Design a program that
o assigns mode of transportation to each racer

o starts the race

● For now, assume transportation options are Car and Bike

Andries van Dam © 2024 9/24/24 7/80

Goal 1: Assign transportation to each racer

● Need transportation classes

o App needs to give one to each racer

● Let’s use Car and Bike classes

● Both classes will need to describe

how the transportation moves

o Car needs drive method

o Bike needs pedal method

Andries van Dam © 2024 9/24/24 8/80

Coding the project (1/4)

● Let’s build transportation classes

public class Bike {

public Bike() { // constructor
// code elided

}
public void pedal() {

// code elided
}
// more methods elided

}

public class Car {

public Car() { // constructor
// code elided

}
public void drive() {

// code elided
}
// more methods elided

}

Andries van Dam © 2024 9/24/24 9/80

Goal 1: Assign transportation to each racer

● Need racer classes that will tell Chloe and
Karim to use their type of transportation

o CarRacer

o BikeRacer

● What methods will we need? What capabilities
should each -Racer class have?

● CarRacer needs to know how to use the car

o write useCar() method: uses drive(), shields
caller from knowing what all useCar() might
need to do

● BikeRacer needs to know how to use the bike

o write useBike() method: uses pedal(), shields
caller from knowing what all useBike() might
need to do

CarRacer

+ useCar()

BikeRacer

+ useBike()

Car

+ drive()

Bike

+ pedal()

Andries van Dam © 2024 9/24/24 10/80

Coding the project (2/4)

● Let’s build the racer classes

public class CarRacer {
private Car car;

public CarRacer() {
this.car = new Car();

}

public void useCar() {
this.car.drive();
// other methods as needed

}
// more methods elided

}

public class BikeRacer {
private Bike bike;

public BikeRacer() {
this.bike = new Bike();

}

public void useBike() {
this.bike.pedal();
// other methods as needed

}
// more methods elided

}

Andries van Dam © 2024 9/24/24 11/80

Goal 2: Tell racers to start the race

● Race class is composed of two
Racers

o App instantiates Race

o Race is the top-level logic class

● Race class will have startRace()
method

o startRace() tells each Racer to
use their transportation

● startRace() gets called in App

startRace:
Tell this.chloe to useCar
Tell this.karim to useBike

CarRacer

+ useCar()

BikeRacer

+ useBike()

Race

+ startRace()

Andries van Dam © 2024 9/24/24 12/80

Coding the project (3/4)

● Given our CarRacer class, let’s
build the Race class public class Race {

private CarRacer chloe;
private BikeRacer karim;

public Race() {
this.chloe = new CarRacer();
this.karim = new BikeRacer();

}

public void startRace() {
this.chloe.useCar();
this.karim.useBike();

}
}

public class CarRacer {
private Car car;

public CarRacer() {
this.car = new Car();

}

public void useCar() {
this.car.drive();

}
// more methods elided

}

// BikeRacer class elided

Old code

But how does a Race get created and

how does startRace() get called?

Andries van Dam © 2024 9/24/24 13/80

Coding the project (4/4)

● Now build the App class

● Program starts with main()

● main() calls startRace() on
cs15Race

o Could call startRace() in Race’s
constructor, however flow of control is
more clear starting race in App class

public class App {

public static void main(String[] args) {
Race cs15Race = new Race();
cs15Race.startRace();

}

}

// from the Race class on slide 11

public void startRace() {
this.chloe.useCar();
this.karim.useBike();

}

Andries van Dam © 2024 9/24/24 14/80

The Program

public class Race {
private CarRacer chloe;
private BikeRacer karim;

public Race() {
this.chloe = new CarRacer();
this.karim = new BikeRacer();

}

public void startRace() {
this.chloe.useCar();
this.karim.useBike();

}
}

public class App {
public static void main(String[] args) {

Race cs15Race = new Race();
cs15Race.startRace();

}
}

public class CarRacer {
private Car car;

public CarRacer() {
this.car = new Car();

}

public void useCar() {
this.car.drive();

}

}

public class BikeRacer {
private Bike bike;

public BikeRacer() {
this.bike = new Bike();

}

public void useBike() {
this.bike.pedal();

}
}

Andries van Dam © 2024 9/24/24 15/80

What does our design look like?

● Java initializes an instance of App,

calling main
o App omitted from class diagram by

convention

● main initializes an instance of Race
● Race’s constructor initializes chloe, a

CarRacer and karim, a BikeRacer
o CarRacer’s constructor initializes car, a

Car
o BikeRacer’s constructor initializes

bike, a Bike

Race

+ startRace()

CarRacer

+ useCar()

BikeRacer

+ useBike()

Car

+ drive()

Bike

+ pedal()

Andries van Dam © 2024 9/24/24 16/80

Flow of control (1/2)

● main initializes an instance of Race
● Race’s constructor initializes chloe, a

CarRacer and karim, a BikeRacer
o CarRacer’s constructor initializes car,

a Car
o BikeRacer’s constructor initializes

bike, a Bike

public class App {

public static void main(String[] args) {
Race cs15Race = new Race();
cs15Race.startRace();

}
}

public class CarRacer {
// constructor elided, creates car

public void useCar() {
this.car.drive();

}
}

public class Race {
private CarRacer chloe;
private BikeRacer karim;

public Race() {
this.chloe = new CarRacer();
this.karim = new BikeRacer();

}

public void startRace() {
this.chloe.useCar();
this.karim.useBike();

}
}

public class BikeRacer {
// constructor elided, creates bike

public void useBike() {
this.bike.pedal();

}
}

Andries van Dam © 2024 9/24/24 17/80

Flow of control (2/2)

● After Race constructs chloe and

karim, App calls

cs15Race.startRace()
● chloe calls useCar() and karim calls

useBike()
● useCar() calls this.car.drive()
● useBike() calls this.bike.pedal()

public class App {

public static void main(String[] args) {
Race cs15Race = new Race();
cs15Race.startRace();

}
}

public class CarRacer {
// constructor elided, creates car

public void useCar() {
this.car.drive();

}
}

public class Race {
// constructor elided; creates chloe and karim

public void startRace() {
this.chloe.useCar();
this.karim.useBike();

}
}

public class BikeRacer {
// constructor elided, creates bike

public void useBike() {
this.bike.pedal();

}
}

Andries van Dam © 2024 9/24/24 18/80

Can we do better?

Andries van Dam © 2024 9/24/24 19/80

Things to think about

● Do we need two different Racer classes?

o we want multiple instances of Racers that use different modes of transportation

▪ both classes are very similar, they just use their own mode of transportation

(useCar and useBike)

▪ do we need 2 different classes that serve essentially the same purpose?

o how can we simplify?

Andries van Dam © 2024 9/24/24 20/80

Solution 1: Create one Racer class with
multiple “useX” methods!

● Create one Racer class

o define different use methods for
each type of transportation

● chloe would be an instance of
Racer and in startRace we would
call:

this.chloe.useCar(new Car());

o Car’s drive() method will be
invoked

● Good: only one Racer class

● But: Racer has to aggregate a
use…() method to accommodate
every kind of transportation!

public class Racer {
public Racer(){

// constructor
}

public void useCar(Car myCar){
myCar.drive();

}

public void useBike(Bike myBike){
myBike.pedal();

}
}

Andries van Dam © 2024 9/24/24 21/80

Solution 1 Drawbacks

● Now imagine all the

CS15 TAs join the race

and there are 10

different modes of

transportation

● Writing these similar
useX() methods is a lot

of work for you, as the

developer, and it is an

inefficient coding style

public class Racer {

public Racer() {
// constructor

}
public void useCar(Car myCar){//code elided}
public void useBike(Bike myBike){//code elided}
public void useHoverboard(Hoverboard myHb){//code elided}
public void useHorse(Horse myHorse){//code elided}
public void useScooter(Scooter myScooter){//code elided}
public void useMotorcycle(Motorcycle myMc) {//code elided}
public void usePogoStick(PogoStick myPogo){//code elided}
// And more…

}

Andries van Dam © 2024 9/24/24 22/80

Is there another solution?

● Can we go from left to right?

Racer

useCar(Car car)
useBike(Bike bike)
useHoverBoard(HoverBoard hoverboard)
useHorse(Horse horse)
useScooter(Scooter scooter)
useMotorcycle(Motorcycle motorcycle)
usePogoStick(PogoStick pogo)

Racer

useTransportation(…)

Andries van Dam © 2024 9/24/24 23/80

Outline

● Transportation Example

● Intro to Interfaces

● Implementing Interfaces

● Polymorphism

Andries van Dam © 2024 9/24/24 24/80

Interfaces and Polymorphism

public class Car implements Transporter {

public Car() {
// code elided

}
public void drive(){

// code elided
}

@Override
public void move() {

this.drive();
}
// more methods elided

}

public class Racer {

// previous code elided
public void useTransportation(

Transporter transport) {
transport.move();

}
}

public interface Transporter {
public void move();

}

● In order to simplify code, we need to learn:
o Interfaces
o Polymorphism
o we’ll see how this new code works shortly:

Andries van Dam © 2024 9/24/24 25/80

Interfaces: Spot the Similarities

● What do cars and bikes have in common?

● What do cars and bikes not have in common?

Andries van Dam © 2024 9/24/24 26/80

Cars vs. Bikes

● Drop kickstand

● Change gears

● …

Cars Bikes

● Play radio

● Turn off/on headlights

● Turn off/on turn signal

● Lock/unlock doors

● …

● Move

● Brake

● Steer

● …

Andries van Dam © 2024 9/24/24 27/80

Digging deeper into the similarities

● How similar are they when they move?

o do they move in same way?

● Not very similar

o cars drive

o bikes pedal

● Both can move, but in different ways

● We prefer the more general move to
the previous useCar(), useBike()

Andries van Dam © 2024 9/24/24 28/80

Can we model this in code?
● Many real-world objects have several broad

functional similarities
o cars and bikes can move

o cars and laptops can play radio

o phones and Teslas can be charged

● Take Car and Bike classes
o how can their similar functionalities get

enumerated in one place?

o how can their broad relationship get modeled
through code?

● Note: cars and bikes serve a similar

purpose while phones and Teslas don’t –

we only care that they share some similar

functionality (but potentially quite different

implementations)

Car

● move()
● brake()
● steer()

● playRadio()
● lockDoors()
● unlockDoors()

Bike

● move()
● brake()
● steer()

● dropKickstand()
● changeGears()

*Abbreviated class diagram

Andries van Dam © 2024 9/24/24 29/80

Introducing Interfaces (1/2)
● Interface groups declarations of similar capabilities of

different classes together

● Looks like a totally stripped-down class declaration, with
just method declarations:

● public interface Transporter {
public void move();
// other common methods (brake, steer…)

}

● Cars and Bikes can “implement” a Transporter
interface
o they can transport people from one place to another

o they “act as” transporters

▪ can move (and brake, steer…)

o for this lecture, interfaces are green and classes that
implement them are pink

Car

● move()
● brake()
● steer()

● playRadio()
● lockDoors()
● unlockDoors()

Bike

● move()
● brake()
● steer()

● dropKickstand()

● changeGears()

Andries van Dam © 2024 9/24/24 30/80

Introducing Interfaces (2/2)

● Interfaces are contracts that classes agree to

● If a class chooses to implement a given interface, it must define all
methods declared in interface

o if a class doesn’t implement one of interface’s methods, the compiler
“raises errors”

▪ later we’ll discuss strong motivations for this “contract enforcement”

● Interfaces only declare, don’t define their methods – classes that
implement the interfaces provide definitions/implementations

o interfaces only care every class that implements the interface must define
the methods declared in the interface – not how they are defined

● Interfaces model similarities while ensuring consistency

o what does this mean?

Andries van Dam © 2024 9/24/24 31/80

Models Similarities while Ensuring
Consistency (1/3)

Let’s break that down into two parts:

1) Model Similarities

2) Ensure Consistency

Andries van Dam © 2024 9/24/24 32/80

Models Similarities while Ensuring
Consistency (2/3)

● How does this help our program?

● We know Cars and Bikes both need to move
o i.e., should both have some move() method

o let compiler know that too!

● Make the Transporter interface
o what methods should the Transporter interface declare? Similarities!

▪ move() (plus brake(), steer()…)

o compiler ensures consistency--doesn’t care how method is defined,

just that it has been defined

o general tip: methods that interface declares should model functionality
that all implementing classes share

Andries van Dam © 2024 9/24/24 33/80

Declaring an Interface (1/3)

public interface Transporter {

public void move();
//other methods

}

● Declare it as interface rather
than class

● Declare methods – the contract

● In this case, we show only one
required method: move()

● All classes that sign contract
(implement this interface) must
define actual implementation of
any declared methods

Andries van Dam © 2024 9/24/24 34/80

Declaring an Interface (2/3)

● Interfaces are only contracts,
not classes that can be
instantiated

● Interfaces can only declare
methods – not define them

● Notice: method declaration
end with semicolons, not
curly braces – no code!

public interface Transporter {

public void move();
//other methods

}

Andries van Dam © 2024 9/24/24 35/80

Declaring an Interface (3/3)

● That’s all there is to it!

● Interfaces, just like
classes, have their own
.java file. This file
would be
Transporter.java

public interface Transporter {

public void move();
//other methods

}

Andries van Dam © 2024 9/24/24 36/80

Outline

● Transportation Example

● Intro to Interfaces

● Implementing Interfaces

● Polymorphism

Andries van Dam © 2024 9/24/24 37/80

Implementing an Interface (1/6)

public class Car implements
Transporter {

public Car() {
// constructor

}

public void drive() {
// code for driving car

}
}

● Let’s modify Car to implement

Transporter

o declare that Car “acts-as”

Transporter

● Add implements Transporter
to class declaration

● Promises compiler that Car will

define all methods declared in

Transporter interface

o i.e., move()

Andries van Dam © 2024 9/24/24 38/80

Implementing an Interface (2/6)

● Will this code compile?
o nope :(

● Never implemented move() –

drive() doesn’t suffice.

Compiler will complain

accordingly

“Error: Car does not override
method move() in Transporter” *

*Note: the full error message is “Car is not abstract and does not override abstract
method move() in Transporter.” We’ll get more into the meaning of abstract in a later lecture.

public class Car implements
Transporter {

public Car() {
// constructor

}

public void drive() {
// code for driving car

}
}

Andries van Dam © 2024 9/24/24 39/80

Implementing an Interface (3/6)

public class Car implements
Transporter {

public Car() {
// constructor

}

public void drive() {
// code for driving car

}

@Override
public void move() {

this.drive();
}

}

● Next: honor contract by

defining a move()
method

● Method signature

(name and number/type

of parameters) and

return type must match

how it’s declared in

interface

Andries van Dam © 2024 9/24/24 40/80

Implementing an Interface (4/6)

public class Car implements
Transporter {

public Car() {
// constructor

}

public void drive() {
// code for driving car

}

@Override
public void move() {

this.drive();
}

}

● Include @Override right above
the method signature

● @Override is an annotation – a
signal to the compiler (and to
anyone reading your code)
o allows compiler to enforce that

interface actually has method
declared

o more explanation of @Override
in next lecture

● Annotations, like comments,
have no effect on how code
behaves at runtime

What does @Override mean?

Andries van Dam © 2024 9/24/24 41/80

Implementing an Interface (5/6)

public class Car implements Transporter {

// previous code elided

public void drive() {
// code for driving car

}

@Override
public void move() {

this.drive();
this.brake();
this.drive();

}

public void brake() {
// code elided

}
}

● Defining interface method is
like defining any other
method

● Definition can be as simple or
complex as it needs to be

● Ex.: Let’s modify Car’s move
method to include braking

● What will instance of Car do
if move() gets called on it?

Andries van Dam © 2024 9/24/24 42/80

Implementing an Interface (6/6)

● As with signing multiple contracts,
classes can implement multiple
interfaces

o “I signed my rent agreement, so I'm
a renter, but I also signed my
employment contract, so I'm an
employee. I'm the same person.”

o what if I wanted Car to be able to
change color as well?

o create a Colorable interface

o add that interface to Car’s class
declaration

● Class implementing interfaces must
define every single method from
each interface

public class Car implements Transporter, Colorable
{

public Car(){ // body elided }
// @Override annotation elided for each method
public void drive(){ // body elided }
public void move(){ // body elided }
public void setColor(Color c){ // body elided }
public Color getColor(){ // body elided }

}

public interface Colorable {

public void setColor(Color c);
public Color getColor();

}

Andries van Dam © 2024 9/24/24 43/80

Modeling Similarities While Ensuring
Consistency (3/3)

● Interfaces are formal contracts and ensure consistency

o compiler will check to ensure all methods declared in interface
are defined

● Can trust that any instance of class that implements
Transporter can move()

● Will know how 2 classes are related if both implement
Transporter

Andries van Dam © 2024 9/24/24 44/80

TopHat Question

Can you instantiate an interface as you can a class?

A. Yes

B. No

Join Code: 316062

Andries van Dam © 2024 9/24/24 45/80

TopHat Question

Can an interface define code for its methods?

A. Yes

B. No

Join Code: 316062

Andries van Dam © 2024 9/24/24 46/80

TopHat Question
Which color-coded segment of this program is incorrect?

A. public interface Colorable {
public Color getColor() {

B. return Color.PINK;
}

}

C. public class Rectangle implements Colorable {
// constructor elided

D. @Override
public Color getColor() {

E. return Color.RED;
}

}

Join Code: 316062

Andries van Dam © 2024 9/24/24 47/80

TopHat Question
Given the following interface:

public interface Clickable {
public void click();

}

Which of the following would work as an implementation of the Clickable
interface? (don’t worry about what changeXPosition does)

A.

@Override
public void click(double xPosition) {

this.changeXPosition(xPosition);
}

B.

C. @Override
public void clickIt() {

this.changeXPosition(100.0);
}

@Override
public double click() {

return this.changeXPosition(100.0);
}

D.
@Override
public void click() {

this.changeXPosition(100.0);
}

Join Code: 316062

Andries van Dam © 2024 9/24/24 48/80

Back to the CIT Race

public class Car implements Transporter {

public Car() {
// code elided

}
public void drive() {

// code elided
}

@Override
public void move() {

this.drive();
}

// more methods elided
}

public class Bike implements Transporter {

public Bike() {
// code elided

}
public void pedal() {

// code elided
}

@Override
public void move() {

this.pedal();
}

// more methods elided
}

● Let’s make transportation classes use an interface

Andries van Dam © 2024 9/24/24 49/80

Leveraging Interfaces

● Given that there’s a guarantee that anything that
implements Transporter knows how to move, how can
it be leveraged to create single
useTransportation(…) method?

Racer

useTransportation(…)

Racer

useCar(Car car)
useBike(Bike bike)
useHoverBoard(HoverBoard hoverboard)
useHorse(Horse horse)
useScooter(Scooter scooter)
useMotorcycle(Motorcycle motorcycle)
usePogoStick(PogoStick pogo)

Andries van Dam © 2024 9/24/24 50/80

Outline

● Transportation Example

● Intro to Interfaces

● Implementing Interfaces

● Polymorphism

Andries van Dam © 2024 9/24/24 51/80

Introducing Polymorphism

● Poly = many, morph = forms

● A way of coding generically

o way of referencing multiple classes sharing abstract functionality as acting as

one generic type

▪ cars and bikes can both move() → refer to them as classes of type Transporter

▪ phones and Teslas can both getCharged() → refer to them as class of type

Chargeable, i.e., classes that implement Chargeable interface

▪ cars and boomboxes can both playRadio() → refer to them as class of type

RadioPlayer

● How do we write one generic useTransportation(…) method?

Andries van Dam © 2024 9/24/24 52/80

What would this look like in code?

public class Racer {

// previous code elided
public void useTransportation(Transporter transportation) {

transportation.move();
}

}
This is polymorphism!

transportation instance

passed in could be instance of

Car, Bike, etc., i.e., of any class

that implements the interface

Andries van Dam © 2024 9/24/24 53/80

Let’s break this down

There are two parts to implementing polymorphism:

1. Actual vs. Declared Type

2. Method resolution

public class Racer {

// previous code elided
public void useTransportation(Transporter transportation) {

transportation.move();
}

}

what’s the actual vs. declared
type of any transportation

instance passed in?

which move() is executed?

Andries van Dam © 2024 9/24/24 54/80

Actual vs. Declared Type (1/2)

● We first show polymorphic assignment (typically not useful by
itself) and then polymorphic parameter passing

● Consider following polymorphic assignment statement:

Transporter chloesCar = new Car();

● We say “chloesCar” is of type Transporter,” but we
instantiate a new Car and assign it to chloesCar... is that legal?

o doesn’t Java do “strict type checking”? (type on LHS = type on RHS)

o how can instances of Car get stored in variable of type Transporter?

Andries van Dam © 2024 9/24/24 55/80

Actual vs. Declared Type (2/2)
● Can treat Car/Bike instances as

instances of type Transporter

● Car is the actual type
o Java compiler will look in this class for the

definition of any method called on

transportation
Transporter transportation = new Car();

Nope. The playRadio() method is
not declared in Transporter
interface, therefore compiler does not
recognize it as a valid method call

transportation.playRadio();

● Transporter is the declared type
o compiler will limit any caller so it can only

call methods on instances that are declared

as instances of type Transporter AND the

methods are declared in that interface

● If Car defines playRadio() method, is
this correct?
transportation.playRadio()

Andries van Dam © 2024 9/24/24 56/80

Is this legal?

Transporter karimsBike = new Bike();

Radio wouldn’t implement Transporter. Since

Radio cannot “act as” type Transporter, you cannot
treat it as of type Transporter

Transporter chloesCar = new Car();

Transporter chloesRadio = new Radio();

Andries van Dam © 2024 9/24/24 57/80

Only Declared Type’s Methods Can be Used
● What methods must Car and Bike have in

common?

o move()

● How do we know that?

o they implement Transporter

▪ guarantees that they have move(), plus

whatever else is appropriate to that class

● Think of Transporter like the “lowest

common denominator”

o it’s what all classes of type Transporter
will have in common

o only move() may be called if an instance is

passed as the declared interface type

class Car implements Transporter{

public void move();
public void playRadio();
// etc.

}

class Bike implements Transporter{

public void move();
public void dropKickstand();
// etc.

}

Andries van Dam © 2024 9/24/24 58/80

Motivations for Polymorphism
● Many different kinds of transportation but only care about

their shared capability
o i.e., how they move

● Polymorphism lets programmers sacrifice specificity for

generality
o treat any number of classes as their lowest common denominator

o limited to methods declared in that denominator

▪ can only use methods declared in Transporter

● For this program, that sacrifice is ok!
o Racer doesn’t care if an instance of Car can playRadio() or if an instance of

Bike can dropKickstand()

o only method Racer wants to call is move()

Andries van Dam © 2024 9/24/24 59/80

Polymorphism in Parameters

● What are implications of this method declaration?

public void useTransportation(Transporter transportation) {
// code elided

}

o useTransportation() will accept any class that implements Transporter

o we say that Transporter is the (declared) type of the parameter

o we can pass in an instance of any class that implements the Transporter interface

o useTransportation() can only call methods declared in Transporter

Andries van Dam © 2024 9/24/24 60/80

Is this legal?

Transporter karimsBike = new Bike();
this.karim.useTransportation(karimsBike);

Car chloesCar = new Car();
this.chloe.useTransportation(chloesCar);

Radio chloesRadio = new Radio();
this.chloe.useTransportation(chloesRadio);

A Radio wouldn’t implement Transporter. Therefore,
useTransportation() cannot treat it as a type of

Transporter

Even though

chloesCar is

declared as a Car,

not a Transporter,
the compiler can still

verify that Car
implements

Transporter

public void useTransportation(Transporter transportation) {
// code elided

}

Andries van Dam © 2024 9/24/24 61/80

Let’s look at move() (1/2)

● Why call move()?

● What move() method gets executed?

● Since the only method declared in Transporter is move(), all
we will ever ask objects of type Transporter to do is move()

public class Racer {

// previous code elided
public void useTransportation(Transporter transportation) {

transportation.move();
}

}

Andries van Dam © 2024 9/24/24 62/80

Let’s look at move() (2/2)

● Only have access to instance of type Transporter

o cannot call transportation.drive() or

transportation.pedal()

▪ that’s okay, because all that’s needed is move()

o limited to the methods declared in Transporter

Andries van Dam © 2024 9/24/24 63/80

Method Resolution: Which move() is
executed?
● Consider this section of code in Race class:

Transporter karimsBike = new Bike();
this.karim.useTransportation(karimsBike);

● Remember what useTransportation() method looks like:

public void useTransportation(Transporter transportation) {
transportation.move();

}

What is “actual type” of transportation in

this.karim.useTransportation(karimsBike); ?

Andries van Dam © 2024 9/24/24 64/80

Method Resolution (1/4)

● Bike is actual type

o karim was passed an instance
of Bike as the argument

● Transporter is declared type

o Bike instance is treated as
type of Transporter

● So… what happens in
transportation.move()?

o What move() method gets
used?

public class Racer {
// previous code elided

public void useTransportation(Transporter
transportation) {

transportation.move();
}

}

public class Race {

private Racer karim;
// previous code elided

public void startRace() {
Transporter karimsBike = new Bike();
this.karim.useTransportation(karimsBike);

}
}

Andries van Dam © 2024 9/24/24 65/80

Method Resolution (2/4)

● karim is a Racer

● Bike’s move() method gets used

● Why?

o Bike is the actual type of this

Transporter

▪ compiler will execute methods
defined in Bike class

o Transporter is the declared

type

▪ compiler limits methods that can
be called to those declared in
Transporter interface

public class Race {
// previous code elided
public void startRace() {

Transporter karimsBike = new Bike();
this.karim.useTransportation(karimsBike);

}
}

public class Bike implements Transporter {
// previous code elided
public void move() {

this.pedal();
}

}

public class Racer {
// previous code elided
public void useTransportation(Transporter

transportation) {
transportation.move();

}
}

Andries van Dam © 2024 9/24/24 66/80

Method Resolution (3/4)

● What if karim received
an instance of Car?
o What move() method

would get called then?
▪ Car’s!

public class Race {
// previous code elided
public void startRace() {

Transporter karimsCar = new Car();
this.karim.useTransportation(karimsCar);

}
}

public class Car implements Transporter {
// previous code elided
public void move() {

this.drive();
}

}

public class Racer {
// previous code elided
public void useTransportation(Transporter

transportation) {
transportation.move();

}
}

Andries van Dam © 2024 9/24/24 67/80

Method Resolution (4/4)

● move() method is bound dynamically – the compiler does
not know which move() method to use until program runs
o same “transport.move()” line of code could be executed indefinite

number of times with different method resolution each time

o this method resolution is an example of dynamic binding, which
directly contrasts the normal static binding, in which method gets
resolved at compile time

Andries van Dam © 2024 9/24/24 68/80

TopHat Question
Given the following class:

Given that Typeable has declared the type() method and Clickable has
declared the click() method, which of the following calls is valid?

A.

B.

Typeable macBook = new Typeable();
macBook.type();

B.

Typeable macBook = new Laptop();
macBook.click();

D.

C.

Clickable macBook = new Laptop();
macBook.click();

Clickable macBook = new Clickable();
macBook.type();

public class Laptop implements Typeable, Clickable { // two interfaces
public void type() {
// code elided

}
public void click() {

// code elided
}

Join Code: 316062

Andries van Dam © 2024 9/24/24 69/80

Why does polymorphism work when
calling methods?

● Declared type and actual type work together
o declared type keeps things generic

• can reference many classes using one generic type

o actual type ensures specificity

• when calling declared type’s method on an instance, the actual code that
is called is the code defined in the actual type’s class (dynamic binding)

Declared Actual

Katara, an instance of
WaterBender, defines
bend() to water bend

Bender interface
declares the bend()

method for all
Benders

Andries van Dam © 2024 9/24/24 70/80

When to use polymorphism?

● Do you use only functionality declared in interface OR do you
need specialized functionality from implementing class?
o if only using functionality from the interface → polymorphism!

o if need specialized methods from implementing class, don’t use
polymorphism

● If defining goOnScenicDrive()…
o want to put topDown() on Convertible, but not every Car can put top

down

▪ don’t use polymorphism, not every Car can goOnScenicDrive() i.e.,
can’t code generically

Andries van Dam © 2024 9/24/24 71/80

Why use interfaces?
● Contractual enforcement

o will guarantee that class has certain capabilities

▪ Car implements Transporter, therefore it must know how to move()

● Polymorphism

o can have implementation-agnostic classes and methods

▪ know that these capabilities exist, don’t care how they’re implemented

▪ allows for more generic programming

o useTransportation() can take in any instance of type Transporter

o can easily extend this program to use any form of transportation, with minimal

changes to existing code

▪ a tool for extensible programming

▪ how?

Andries van Dam © 2024 9/24/24 72/80

Why is this important?

● Using more than 2 methods of transportation?

● Old Design:
o need more classes → more specialized methods (useCar(),

useBike(), useRollerblades(), etc.)

● New Design:
o as long as the new classes implement Transporter, Racer

doesn’t care what transportation it has been given

o don’t need to change Racer!

▪ less work for you!

▪ just add more transportation classes that implement Transporter

▪ “need to know” principle, aka “separation of concerns”

Andries van Dam © 2024 9/24/24 73/80

The Program

public class Race {
private Racer chloe, karim;

public Race() {
this.chloe = new Racer();
this.karim = new Racer();

}

public void startRace() {
Transporter chloesCar = new Car();

this.chloe.useTransportation(chloesCar);
Transporter karimsBike = new Bike();
this.karim.useTransportation(karimsBike);

}
}

public class App {
public static void main(String[] args) {

Race cs15Race = new Race();

cs15Race.startRace();
}

}

public class Racer {
public Racer() {}

public void useTransportation(Transporter
transportation) {

transportation.move();
}

}

public class Car implements Transporter {
public Car() {}
public void drive() {

// code elided
}
public void move() { // @Override elided

this.drive();
}

}

public class Bike implements Transporter {
public Bike() {}
public void pedal() {

// code elided
}
public void move() { // @Override elided

this.pedal();
}

}

public interface Transporter {
public void move();

}

Andries van Dam © 2024 9/24/24 74/80

Flow of Control (1/2)

public class Race {
private Racer chloe, karim;

public Race() {
this.chloe = new Racer();
this.karim = new Racer();

}

public void startRace() {
Transporter chloesCar = new Car();

this.chloe.useTransportation(chloesCar);
Transporter karimsBike = new Bike();
this.karim.useTransportation(karimsBike);

}
}

public class App {
public static void main(String[] args) {

Race cs15Race = new Race();

cs15Race.startRace();
}

}

How would this program run?

● Program begins with main method of App class

● main method initializes cs15Race, an instance of Race
● Race’s constructor initializes chloe, a Racer, and karim,

a Racer
● main method calls cs15Race.startRace()
● startRace() calls:

Transporter chloesCar = new Car();
this.chloe.useTransportation(chloesCar);
Transporter karimsBike = new Bike();
this.karim.useTransportation(karimsBike);

Andries van Dam © 2024 9/24/24 75/80

Flow of Control (2/2)

public class Racer {
public Racer() {}

public void useTransportation(Transporter
transportation) {

transportation.move();
}

}

public class Car implements Transporter {
public Car() {}
public void drive() {

// code elided
}
public void move() {

this.drive();
}

}

public class Bike implements Transporter {
public Bike() {}
public void pedal() {

// code elided
}
public void move() {

this.pedal();
}

}

public interface Transporter {
public void move();

}

● useTransportation(chloesCar) calls Car’s
move() method which calls this.drive()

● useTransportation(karimsBike) calls Bike’s
move() method which calls this.pedal()

public void startRace() {
Transporter chloesCar = new Car();

this.chloe.useTransportation(chloesCar);
Transporter karimsBike = new Bike();
this.karim.useTransportation(karimsBike);

}
}

chloesCarkarimsBike

Andries van Dam © 2024 9/24/24 76/80

What does our new design look like? (1/2)

● main method instantiates cs15Race,
an instance of Race
o App omitted from class diagram

● Race’s constructor initializes two
Racers – karim and chloe
o Race is composed of two Racers

● startRace() instantiates chloesCar
and karimsBike
o these are local variables, and do not exist

on the class diagram

● In interface diagram, can represent
relationship between our vehicles and
Transporter

Race

+ startRace()

Racer

+ useTransportation(Transporter)

Transporter

CarBike

Andries van Dam © 2024 9/24/24 77/80

● In a larger version of this
program, we may want each
Racer to send more messages
to their Transporter
o we could store an instance

variable of declared type
Transporter

● Now, Car and Bike are peer
objects of the Racer classCar

+ drive()

+ move()

Bike

+ pedal()

+ move()

Race

+ startRace()

Racer

+ useTransportation(Transporter)

What does our new design look like? (2/2)

Andries van Dam © 2024 9/24/24 78/80

Modified Program

public class Race {
private Racer chloe, karim;

public Race() {
Transporter chloesCar = new Car();
this.chloe = new Racer(chloesCar);

Transporter karimsBike = new Bike();
this.karim = new Racer(karimsBike);

}
public void startRace() {

this.chloe.useTransportation();
this.karim.useTransportation();

}

}

public class App {
public static void main(String[] args) {

Race cs15Race = new Race();

cs15Race.startRace();
}

}

public class Racer {

private Transporter transporter;

public Racer(Transporter myTransporter) {
this.transporter = myTransporter;

}

public void useTransportation() {
this.transporter.move();

}

public void returnVehicle() {
// code elided - will call a method on

transporter here
}

}

public class Car implements Transporter {
// omitted, same as before

}

public class Bike implements Transporter {
// omitted, same as before

}

public interface Transporter {
public void move();
// other methods of Transporters elided

}

Andries van Dam © 2024 9/24/24 79/80

In Summary

● Interfaces are contracts, can’t be instantiated
o force classes that implement them to define specified methods

● Polymorphism allows for generic code
o treats multiple classes as their “generic type” while still allowing

specific method implementations to be executed

● Polymorphism + Interfaces
o generic coding

● Why is it helpful?
o you want to be the laziest (but cleanest) programmer you can be

Andries van Dam © 2024 9/24/24 80/80

Announcements

● TicTacToe released today (9/24)

o Early hand-in: 9/26

o On-time hand in: 9/28

o Late hand-in: 9/30

● Class Relationships Section

o Mini Assignment due before section

o Fill out the form linked at the bottom of handout for credit

● CS15 Mentorship

o Officially begun!

● T-Shirt Contest!!!!!

o Designs due next Tuesday before Lecture!! (looking at you RISD students :D)

AI II: Intro to Neural Networks
Topics in Socially Responsible Computing

What is a Neural Network?

•A type of computer system inspired
by the human brain

Source: Wavefrontshaping.net

•Made up of layers of interconnected
nodes called neurons

•Successive layers allow for
recognition of more complex
features

•Learn and make decisions by
recognizing patterns in data

1/6

Source: Facebook/Cleo Abram

Image Classification

•Neural networks are great for
image recognition…

•Example: handwritten digit
classification!

•Can our neural network
identify which number is
represented in the images of
these handwritten digits…?

Image Source: Wolfram2/6

How do we represent an
image?

What is a neuron?

•The input layer has neurons that
store pixel grayscale values (0 =
black, 1 = white, with shades of gray
in between)

3/6

●A neuron holds a number in a neural
network, representing information like
pixel values or processed data

●In this example, the input layer has 36
neurons (for a 6x6 grid)

0.85

0.65

0.25

0.25

0.30

0.78

Input Layer (36 neurons)

0.85

0.65

0.25

0.25

0.30

0

1

2

9

0.78

Hidden Layers Output Layer (10
neurons)

Input Layer (36 neurons)

activation value = ɸ (w0i0 + w1i1 + … + w35i35) = ɸ ((0.90)(0.85) + (0.1)(0.65) + …
(0.45)(0.78))4/6

How does the network learn? (supervised learning)

Training process:

1.Each piece of
training data is
labeled with the
correct output

2.Input data
processed
through the

Image Source: Abhishek Maity5/6

For more in-depth information on how neural
networks work…

Video series that goes in-depth on how neural networks work:
https://www.3blue1brown.com/topics/neural-networks

Article that explains neural networks and details the history
of deep learning:
https://news.mit.edu/2017/explained-neural-networks-
deep-learning-0414

6/6

https://www.3blue1brown.com/topics/neural-networks
https://news.mit.edu/2017/explained-neural-networks-deep-learning-0414
https://news.mit.edu/2017/explained-neural-networks-deep-learning-0414

	Slide 1: ATA
	Slide 2: Lecture 6
	Slide 3: Outline
	Slide 4: Review: Association
	Slide 5: Outline
	Slide 6: Using What You Know
	Slide 7: Goal 1: Assign transportation to each racer
	Slide 8: Coding the project (1/4)
	Slide 9: Goal 1: Assign transportation to each racer
	Slide 10: Coding the project (2/4)
	Slide 11: Goal 2: Tell racers to start the race
	Slide 12: Coding the project (3/4)
	Slide 13: Coding the project (4/4)
	Slide 14: The Program
	Slide 15: What does our design look like?
	Slide 16: Flow of control (1/2)
	Slide 17: Flow of control (2/2)
	Slide 18: Can we do better?
	Slide 19: Things to think about
	Slide 20: Solution 1: Create one Racer class with multiple “useX” methods!
	Slide 21: Solution 1 Drawbacks
	Slide 22: Is there another solution?
	Slide 23: Outline
	Slide 24: Interfaces and Polymorphism
	Slide 25: Interfaces: Spot the Similarities
	Slide 26: Cars vs. Bikes
	Slide 27: Digging deeper into the similarities
	Slide 28: Can we model this in code?
	Slide 29: Introducing Interfaces (1/2)
	Slide 30: Introducing Interfaces (2/2)
	Slide 31: Models Similarities while Ensuring Consistency (1/3)
	Slide 32: Models Similarities while Ensuring Consistency (2/3)
	Slide 33: Declaring an Interface (1/3)
	Slide 34: Declaring an Interface (2/3)
	Slide 35: Declaring an Interface (3/3)
	Slide 36: Outline
	Slide 37: Implementing an Interface (1/6)
	Slide 38: Implementing an Interface (2/6)
	Slide 39: Implementing an Interface (3/6)
	Slide 40: Implementing an Interface (4/6)
	Slide 41: Implementing an Interface (5/6)
	Slide 42: Implementing an Interface (6/6)
	Slide 43: Modeling Similarities While Ensuring Consistency (3/3)
	Slide 44: TopHat Question
	Slide 45: TopHat Question
	Slide 46: TopHat Question
	Slide 47: TopHat Question
	Slide 48: Back to the CIT Race
	Slide 49: Leveraging Interfaces
	Slide 50: Outline
	Slide 51: Introducing Polymorphism
	Slide 52: What would this look like in code?
	Slide 53: Let’s break this down
	Slide 54: Actual vs. Declared Type (1/2)
	Slide 55: Actual vs. Declared Type (2/2)
	Slide 56: Is this legal?
	Slide 57: Only Declared Type’s Methods Can be Used
	Slide 58: Motivations for Polymorphism
	Slide 59: Polymorphism in Parameters
	Slide 60: Is this legal?
	Slide 61: Let’s look at move() (1/2)
	Slide 62: Let’s look at move() (2/2)
	Slide 63: Method Resolution: Which move() is executed?
	Slide 64: Method Resolution (1/4)
	Slide 65: Method Resolution (2/4)
	Slide 66: Method Resolution (3/4)
	Slide 67: Method Resolution (4/4)
	Slide 68: TopHat Question
	Slide 69: Why does polymorphism work when calling methods?
	Slide 70: When to use polymorphism?
	Slide 71: Why use interfaces?
	Slide 72: Why is this important?
	Slide 73: The Program
	Slide 74: Flow of Control (1/2)
	Slide 75: Flow of Control (2/2)
	Slide 76: What does our new design look like? (1/2)
	Slide 77
	Slide 78: Modified Program
	Slide 79: In Summary
	Slide 80: Announcements
	Slide 81
	Slide 82: What is a Neural Network?
	Slide 83: Image Classification
	Slide 84: How do we represent an image?
	Slide 85: What is a neuron?
	Slide 86
	Slide 87: How does the network learn? (supervised learning)
	Slide 88: For more in-depth information on how neural networks work…

