
1 / 72
Andries van Dam © 2024 9/19/24

Lecture 5
Working with Objects: Part 2

2 / 72
Andries van Dam © 2024 9/19/24

Review Topics at the end of the deck
Please make sure you understand what we have covered so far

● Variables
● Local vs. Instance Variables
● Variable Reassignment
● Instances as Parameters
● Delegation Pattern
● NullPointer Exceptions
● Encapsulation

3 / 72
Andries van Dam © 2024 9/19/24

Outline

● Accessors and Mutators

● Association

o Component-Container Association

o “Many-to-One” Association

o Two-way Association

4 / 72
Andries van Dam © 2024 9/19/24

Accessors
● All instances of a class have the same instance variables (properties) but their

own values
● Instance variables hold the instance’s private properties: encapsulation
● But a class may choose to allow other classes to have selective access to

designated properties without making them public
o e.g., Dog can allow DogGroomer to access its furLength property

● To do this, the class can make the value of an instance variable publicly
available via an accessor method

● These accessor methods typically have the name convention get<Property>
and have a non-void return type

● The return type specified and the type of the value returned must also match!
● Let’s see an example…

5 / 72
Andries van Dam © 2024 9/19/24

● Let’s make Dog’s furLength a
private property but allow controlled
access

● getFurLength is an accessor
method for furLength

● Can call getFurLength on an
instance of Dog to return its current
furLength value

● DogGroomer can now access this
value. We will see why this is useful
in a few slides

public class Dog {

private int furLength;

public Dog() {
this.furLength = 3;

}

public int getFurLength() {
return this.furLength;

}

/* bark, eat, and wagtail elided */
}

Accessors: Example

6 / 72
Andries van Dam © 2024 9/19/24

• A class can give other classes even greater permission by allowing them to
change the value of its properties/instance variables
o e.g., Dog can allow DogGroomer to change the value of its furLength

property
• To do this, the class can define a mutator method which modifies the

value of an instance variable
• These methods typically have the name convention set<Property> and

have void return types
• They also take in a parameter that is used to modify the value of the

instance variable

Mutators

7 / 72
Andries van Dam © 2024 9/19/24

• Let’s define a mutator method,
setFurLength, in Dog that sets
furLength to the value passed in

• DogGroomer can call setFurLength on
an instance of Dog to change its
furLength value

• In fact, DogGroomer can use both
getFurLength and setFurLength to
modify furLength based on its
previous value. Stay tuned for an
example

public class Dog {

private int furLength;

public Dog() {
this.furLength = 3;

}

public int getFurLength() {
return this.furLength;

}

public void setFurLength(int myFurLength) {
this.furLength = myFurLength;

}
/* bark, eat, and wagTail elided */

}

Mutators: Example

8 / 72
Andries van Dam © 2024 9/19/24

• Fill in DogGroomer’s trimFur
method to modify the furLength of
the Dog whose fur is being trimmed

• When a DogGroomer trims the fur
of a dog, it calls the mutator
setFurLength on the Dog and
passes in 1 as an argument. This
will be the new value of furLength

public class DogGroomer {

public DogGroomer() {
// Constructor body elided

}

public void trimFur(Dog shaggyDog) {
shaggyDog.setFurLength(1);
//note trimFur could do other
//things to shaggyDog as well

}
}

Accessors and Mutators: Example (1/5)

9 / 72
Andries van Dam © 2024 9/19/24

public class PetShop {
private DogGroomer groomer;

public PetShop() {
this.groomer = new DogGroomer();
this.testGrooming();

}

public void testGrooming() {
Dog effie = new Dog();
System.out.println(effie.getFurLength());
this.groomer.trimFur(effie);
System.out.println(effie.getFurLength());

}
}

public class DogGroomer {

public DogGroomer() {
// Constructor body elided

}

public void trimFur(Dog shaggyDog) {
shaggyDog.setFurLength(1);

}
}

Check that trimFur works by printing out the Dog’s furLength before and
after we send it to the groomer

accessor getFurLength retrieves value effie
stores in furLength instance variable; mutator
setFurLength used in trimFur updates it

Accessors and Mutators: Example (2/5)

10 / 72
Andries van Dam © 2024 9/19/24

public class PetShop {
private DogGroomer groomer;

public PetShop() {
this.groomer = new DogGroomer();
this.testGrooming();

}

public void testGrooming() {
Dog effie = new Dog();
System.out.println(effie.getFurLength());
this.groomer.trimFur(effie);
System.out.println(effie.getFurLength());

}
}

public class DogGroomer {

public DogGroomer() {
// Constructor body elided

}

public void trimFur(Dog shaggyDog) {
shaggyDog.setFurLength(1);

}
}

● What values print out to the console?

o first, 3 is printed - the initial value assigned to furLength in the Dog
constructor (slide 10)

o next, 1 prints out because groomer just set effie’s furLength to 1

Code from previous
slide!

Accessors and Mutators: Example (3/5)

11 / 72
Andries van Dam © 2024 9/19/24

public class PetShop {
// Constructor elided
public void testGroomer() {

Dog effie = new Dog();
this.groomer.trimFur(effie,);

}
}

public class DogGroomer {
/* Constructor and other code elided */
public void trimFur(Dog shaggyDog) {

shaggyDog.setFurLength(furLength);
}

}

● What if we don’t always want to trim a Dog’s fur to a value of 1?
● When we tell groomer to trimFur, let’s also tell groomer the length to trim the Dog’s fur

● trimFur will take in a second parameter, and set Dog’s fur length to the passed-in
value of furLength (for simplicity, Dog doesn’t error check to make sure that
furLength passed in is less than current value of furLength)

● Now pass in two arguments when calling trimFur so groomer knows what
furLength should be after trimming fur

The groomer will trim the fur
to a furLength of 2!

2

, int furLength

Accessors and Mutators: Example (4/5)

12 / 72
Andries van Dam © 2024 9/19/24

public class PetShop {
// Constructor elided
public void testGroomer() {

Dog effie = new Dog();
int newLen = effie.getFurLength() - 2;
this.groomer.trimFur(effie, newLen);

}
}

public class DogGroomer {
/* Constructor and other code elided */
public void trimFur(Dog shaggyDog, int furLength) {

shaggyDog.setFurLength(furLength);
}

}

● What if we wanted to make sure the value of furLength after trimming is always less than the
value before?

● When we tell groomer the length to trim the Dog’s fur, let’s specify a length less than the
current value of furLength (but no error checking for negative result)

● We could eliminate the local variable newLen by nesting a call to getFurLength as the
second parameter:

this.groomer.trimFur(effie, effie.getFurLength() - 2);

decrease furLength by 2

Accessors and Mutators: Example (5/5)

13 / 72
Andries van Dam © 2024 9/19/24

Accessors and Mutators: Summary
● Instance variables should always be declared private for safety reasons
● If we made these instance variables public, any method could change

them, i.e., with the caller in control of the inquiry or change – this is unsafe
● Instead, the class can provide accessors/mutators (often in pairs, but not

always) which give the class control over how the variable is queried or
altered. For example, a mutator could do error checking on the new value
to make sure it is in range

● Also, an accessor needn’t be as simple as returning the value of a stored
instance variable – it is just a method and can do arbitrary computation on
one or more variables

● Use them sparingly – only when other classes need them

14 / 72
Andries van Dam © 2024 9/19/24

TopHat Question Join Code: 316062
Which of the following method
declaration and definition is correct for
an accessor method in Farm?

public void getFarmHouse() {
return this.farmHouse;

}

public class Farm {
private House farmHouse;

// Farm constructor
public Farm() {
this.farmHouse = new House();
//other methods

}
}

public House getFarmHouse(FarmHouse myFarmHouse) {
this.farmHouse = myFarmHouse;

}

public House getFarmHouse() {
return this.farmHouse;

}

public House getFarmHouse(FarmHouse myFarmHouse) {
return this.myFarmHouse;

}

A

B

C

D

15 / 72
Andries van Dam © 2024 9/19/24

Outline

● Accessors and Mutators

● Association

o Component-Container Association

o “Many-to-One” Association

o Two-way Association

16 / 72
Andries van Dam © 2024 9/19/24

Last Time: Instance Variables
● Instance variables: store the properties of instances of a class for use by

multiple methods—use them only for that purpose

● Attributes are descriptors of objects
o models “described by” relationship

§ Humans are described by age, height, weight, etc.
o attributes typically described by primitives (i.e., int)

● Components are structural parts of composite objects
o models “composed of” relationship

§ Humans are composed of a Head, Torso, Legs, etc.
§ can have hierarchal relationships - Head is further composed of Eyes, Ears, etc.

o composite objects are exceedingly common
o our classes are typically composed of other classes in our program

17 / 72
Andries van Dam © 2024 9/19/24

Today: Peer Objects & Association
● An instance variable can also represent a reference to a peer object

● Peer objects are classes that a class can send messages to – they
aren’t attributes or components
o models “knows about” relationship

§ Humans know about Computers, Pets, Beds, etc.

● How can we create this relationship in our code?

● Use a design pattern we call association
o Several different ways to accomplish this – you will see a few through

this lecture

18 / 72
Andries van Dam © 2024 9/19/24

• We’ve seen how an instance can call methods on instances of its components;
however this relationship is not symmetric: the component instance cannot
communicate with its container!
o Consider an example where we have an Orchestra composed of instrumentalists and a Conductor

o Orchestra creates new instances of instrumentalists and a new instance of a Conductor

o The Conductor instance is a component of the Orchestra

o The Orchestra can now call methods on the Conductor instance – it “knows about” the Conductor

o But what if the Conductor needs to communicate with/”know about” the Orchestra?

o We need additional code to allow this symmetry

• We will tell the Conductor instance about the instance that created it, in this case,
an Orchestra instance. We want to associate the Conductor with the Orchestra
o The easiest way is to pass the Orchestra instance as a parameter to the Conductor’s constructor

o How?!?

Association

19 / 72
Andries van Dam © 2024 9/19/24

● Let’s write a program that models the orchestra
o define an Orchestra class that is composed

of different instrumentalists and the conductor

● Its play method will be used to start and direct
the musical performance

● The Orchestra will delegate to its Conductor
that has the capabilities to do this, so we
instantiate an instance of Conductor in
Orchestra. We say Conductor is a component
of Orchestra

● The Orchestra can tell the Conductor to start
performance because it created it as a
component; play doesn’t need a parameter
because it has access to the conductor

● Separated play so it can be invoked multiple
times, not just in constructor

public class Orchestra {

private Conductor conductor;
//other instance variables for players

public Orchestra() {
this.conductor = new Conductor();
this.play();

}

public void play() {
this.conductor.startPerformance();

}

}

Example: Setting up Association (1/4)

20 / 72
Andries van Dam © 2024 9/19/24

● But what if the Conductor needs to call
methods on the Orchestra?
o the conductor probably needs to know

several things about the orchestra. E.g., how
many instrumentalists are there? Which ones
are present? When is the next rehearsal?...

● We can set up an association so the
Conductor can communicate with the
Orchestra

● We modify the Conductor’s constructor to
take an Orchestra parameter
o and record it as a “knows about” in an

instance variable

o but where do we get this Orchestra?

public class Conductor {

private Orchestra myOrchestra;
// other instance variables elided

public Conductor(Orchestra myOrchestra) {
this.orchestra = myOrchestra;

}

public void startPerformance() {
// code elided

}

// other methods elided
}

Example: Motivation for Association (2/4)

21 / 72
Andries van Dam © 2024 9/19/24

● Back in the Orchestra class, what
argument should Conductor’s
constructor now be passed?
○ the Orchestra instance that

created the Conductor
● How?

○ by passing this as the
argument

■ i.e., the Orchestra tells the
Conductor about itself

public class Orchestra {
private Conductor conductor;
// other instance variables elided

public Orchestra() {
//this is the constructor
this.conductor = new Conductor();

}

public void play() {
this.conductor.startPerformance();

}

// other methods elided
}

this

Example: Using the Association (3/4)

22 / 72
Andries van Dam © 2024 9/19/24

● The instance variable, orchestra, stores a
reference to the instance of Orchestra, of
which the Conductor is a component
● Third type of instance variable relationship: one

class stores a reference to another, peer class –
the Conductor “knows about” its peer class
Orchestra.

● Note: peer class relationship is not necessarily
bidirectional. The Conductor is a component of
the Orchestra, while the Orchestra is a peer
class of the Conductor.

● We will see an example of this relationship being
bidirectional later in this lecture!

● After constructor has been executed and can no
longer reference parameter myOrchestra, any
Conductor method can still access same
Orchestra instance by the name orchestra
o e.g., can call bow() on orchestra in

endPerformance()

public class Conductor {
private Orchestra orchestra;

public Conductor(Orchestra myOrchestra){
this.orchestra = myOrchestra;

}

public void startPerformace() {
// code elided

}

public void endPerformance() {
this.orchestra.bow();

}

}

Example: Using the Association (4/4)

23 / 72
Andries van Dam © 2024 9/19/24

Class Diagram
• Here is the class diagram for our program, a subset of

UML (Unified Modeling Language)
o the top box contains class name
o middle box lists attributes (none in this program)
o bottom box lists methods

+ signifies public, - signifies private (exception to rule)
• Arrow is drawn to show an association between classes

o classes ‘know about’ their components, so we draw arrow
(Orchestra à Conductor)

Important: the “is a component of” relationship discussed in
lecture is also a form of association -- an instance knows
about its components!

o peer class relationship also gets arrow (Conductor à
Orchestra)

24 / 72
Andries van Dam © 2024 9/19/24

TopHat Question Join Code: 316062

public class School {
private Teacher teacher;

public School() {
this.teacher = new Teacher(this);

}
//additional methods, some using
//this.teacher

}

public class Teacher {
private School school;

public Teacher(School mySchool) {
this.school = mySchool;

}
//additional methods, some using
//this.school

}

Which of the following statements is correct, given the code below that establishes an association from
Teacher to School?

A. School can send messages to Teacher, but Teacher cannot send messages to School
B. Teacher can send messages to School, but School cannot send messages to Teacher
C. School can send messages to Teacher, and Teacher can send messages to School
D. Neither School nor Teacher can send messages to each other

25 / 72
Andries van Dam © 2024 9/19/24

TopHat Question Review

● Is Teacher a component of School?
o yes! Teacher is a structural part of the School

● Can School send messages to Teacher?
o yes! School can send messages to all of its components

● Is School a component of Teacher?
o no! Teacher knows about School, but School is not a component of Teacher –

this is a different that comes from the modeling choices in your program
o still can send messages to School because it “knows about” School – instance

variable indicates a reference to a peer class

public class School{
private Teacher teacher;

public School() {
this.teacher = new Teacher(this);

}
//additional methods, some using
//this.teacher

}

public class Teacher{
private School school;

public Teacher(School mySchool) {
this.school = mySchool;

}
//additional methods, some using
//this.school

}

26 / 72
Andries van Dam © 2024 9/19/24

Outline

● Accessors and Mutators

● Association

o Component-Container Association

o “Many-to-One” Association

o Two-way Association

27 / 72
Andries van Dam © 2024 9/19/24

“Many-to-One” Association
● Multiple classes, say A and B, may need to communicate with the same instance of another

class, say C, to accomplish a task. Let’s consider an extension of our PetShop example

● Want to set up a system that allows PetShop employees, in this case DogGroomer, to log hours
worked, and the Manager to approve worked hours and make necessary payment

● Manager could keep track of the DogGroomer’s worked hours in its class as a new functionality,
in addition to all of the Manager’s other functionalities

● Alternatively, the Manager can delegate these tasks to another class

o doesn’t need to know how employee’s working hours are tracked as long as they are tracked

● DogGroomer and Manager would need to “know about” this class in order to send messages to
its instance

● Adding complexity to our design by adding another class, but making the Manager less complex
– like many things in life, it is a tradeoff!

28 / 72
Andries van Dam © 2024 9/19/24

Log in Hours Worked Get hours worked

DogGroomer Manager

• If we define a TimeKeeper class as this third, peer class, both the
DogGroomer and DogGroomer need to be associated with the same
instance of TimeKeeper

• What would happen if DogGroomer and DogGroomer weren’t
associated with the same instance of TimeKeeper?

“Many-to-One” Association

29 / 72
Andries van Dam © 2024 9/19/24

Example: Motivation for Association (1/9)
● If DogGroomer and Manager were associated with different instances, our

communication would fail!

● Still abstract? Let’s see how this looks like with code!

Log in Hours
Worked

Get hours
worked

Manager

DogGroomer

30 / 72
Andries van Dam © 2024 9/19/24

● Create a simple TimeKeeper
class and define some of its
properties and capabilities

● setStartTime and setEndTime
record the start and end times of
a working period

● computeHoursWorked
calculates amount of hours
worked

public class TimeKeeper {
private Time start;
private Time end;

public TimeKeeper() {
//initialize start and end to 0

}

public void setStartTime(Time time) {
this.start = time;

}

public void setEndTime(Time time) {
this.end = time;

}

public Time computeHoursWorked() {
return this.end - this.start;

}

}

Example: Motivation for Association (2/9)

31 / 72
Andries van Dam © 2024 9/19/24

● DogGroomer needs to send messages to an instance
of TimeKeeper in order to keep track of their worked
hours

● Thus, set up an association between DogGroomer
and TimeKeeper, using our pattern

● Modify DogGroomer’s constructor to take in a
parameter of type TimeKeeper. The constructor will
refer to it by the name myKeeper

● DogGroomer now needs to track time spent trimming
fur so call TimeKeeper’s setStartTime and
setEndTime methods inside trimFur,that takes in
just a Dog as before

● Given that DogGroomer was passed an instance of
TimeKeeper in its constructor, how can DogGroomer’s
other methods access this instance?

public class DogGroomer {

public DogGroomer() {
// code for constructor

}

}

public DogGroomer(TimeKeeper myKeeper){
// code for modified constructor

}

public void trimFur(Dog shaggyDog) {
// code to call setStartTime
shaggyDog.setFurLength(1);
// code to call setEndTime

}
}

Example: Motivation for Association (3/9)

32 / 72
Andries van Dam © 2024 9/19/24

● As with the Conductor example, want to
have DogGroomer store its knowledge of
TimeKeeper in an instance variable

● Declare an instance variable keeper in
DogGroomer and have constructor initialize
it to the passed parameter

● keeper now records the myKeeper instance
passed to DogGroomer’s constructor, for use
by its other methods

● Inside trimFur, can now tell this.keeper
to record start and end time
○ we use Java’s built-in method

Instant.Now();

public class DogGroomer {
private TimeKeeper keeper;

public DogGroomer(TimeKeeper myKeeper) {
this.keeper = myKeeper;

}

public void trimFur(Dog shaggyDog) {
this.keeper.setStartTime(Instant.Now());
shaggyDog.setFurLength(1);
this.keeper.setEndTime(Instant.Now());

}
}

Example: Motivation for Association (4/9)

33 / 72
Andries van Dam © 2024 9/19/24

● Back in our PetShop class, we
need to modify how we instantiate
the DogGroomer

● What argument should we pass in
to the constructor of DogGroomer?
○ a new instance of TimeKeeper

public class DogGroomer {
private TimeKeeper keeper;

public DogGroomer(TimeKeeper myKeeper) {
this.keeper = myKeeper; // store the assoc.

}
}

public class PetShop {
private DogGroomer groomer;

public PetShop() {
this.groomer = new DogGroomer();
this.testGroomer();

}

public void testGroomer() {
Dog effie = new Dog(); // local var
this.groomer.trimFur(effie);

}
}

new TimeKeeper()

Example: Motivation for Association (5/9)

34 / 72
Andries van Dam © 2024 9/19/24

Example Cont.: Setting up Association (6/9)

● The Manager, who deals with payments,
and the DogGroomer use the
TimeKeeper as an intermediary

● The Manager’s makePayment(int
rate) needs to know the hours worked
by the DogGroomer
○ the TimeKeeper keeps track of

such information with its properties
(See slide 31)

public class Manager {

public Manager() {
// fill in code

}

public void makePayment(int rate) {
// fill in code

}

}

Log in Hours Worked Get hours worked

DogGroomer
Manager

35 / 72
Andries van Dam © 2024 9/19/24

Example Cont.: Setting up Association (7/9)

● We can set up a second
association so the Manager can
retrieve information from the
TimeKeeper as needed

● Following the same pattern as
with DogGroomer, modify the
Manager’s constructor to take in
an instance of the TimeKeeper
class and record it in an
instance variable

public class Manager {

public Manager() {

}

public void makePayment(int rate) {
// fill in code

}
}

private TimeKeeper keeper;

public Manager(TimeKeeper myKeeper){
this.keeper = myKeeper;

}

36 / 72
Andries van Dam © 2024 9/19/24

Example Cont.: Setting up Association (8/9)
● Call TimeKeeper’s

computeHoursWorked method
inside makePayment to
compute the total number of
hours worked by an employee
and use that to calculate their
total wages

public class Manager {

private TimeKeeper keeper;
public Manager(TimeKeeper myKeeper) {

this.keeper = myKeeper
}

public int makePayment(int rate) {
int hrs = this.keeper.computeHoursWorked();
int wages = hrs * rate;
return wages;

}
}

37 / 72
Andries van Dam © 2024 9/19/24

Example Cont.: Using the Association (9/9)
● Back in PetShop class, add a

new instance of Manager and
associate it with TimeKeeper

● Manager makes payment after
groomer trims fur

● Note: groomer and manager
refer to the same TimeKeeper
instance created by PetShop
o Neither DogGroomer nor

Manager create the instance of
TimeKeeper – it is instantiated
in the top level logic class

public class PetShop {
private DogGroomer groomer;
private Manager manager;

public PetShop() {
TimeKeeper keeper = new TimeKeeper();
this.groomer = new DogGroomer(keeper);
this.manager = new Manager(keeper);
this.testGroomer();
manager.makePayment(<groomer’s pay rate>);

}

public void testGroomer() {
Dog effie = new Dog();//local var
this.groomer.trimFur(effie);

}
}

38 / 72
Andries van Dam © 2024 9/19/24

public class PetShop {
private DogGroomer groomer;
private Manager manager;
public PetShop() {

TimeKeeper keeper = new TimeKeeper();
this.manager = new Manager(keeper);
this.groomer = new DogGroomer(keeper);
this.testGroomer();
this.manager.makePayment(<groomer’s pay rate>);

}
// testGroomer elided

}

Somewhere in memory...

Association: Under the Hood (1/5)
public class Manager {
private TimeKeeper keeper;

public Manager(TimeKeeper myKeeper) {
this.keeper = myKeeper;

}
}

public class DogGroomer {
private TimeKeeper keeper;

public DogGroomer(TimeKeeper myKeeper) {
// this is the constructor!
this.keeper = myKeeper;

}
}

PetShop's naming local variable keeper is
completely arbitrary and independent of
formal parameter names myKeeper in
Manager and DogGroomer - pure
coincidence!

39 / 72
Andries van Dam © 2024 9/19/24

public class PetShop {
private DogGroomer groomer;
private Manager manager;

public PetShop() {
TimeKeeper keeper = new TimeKeeper();
this.manager = new Manager(keeper);
this.groomer = new DogGroomer(keeper);
this.testGroomer();
this.manager.makePayment(<groomer’s pay rate>);

}
// testGroomer elided

}

Somewhere in memory...

Association: Under the Hood (2/5)

Somewhere else in our code, someone calls new PetShop(). An instance of PetShop is created somewhere in
memory and PetShop’s constructor initializes all its instance and local variables

public class Manager {
private TimeKeeper keeper;

public Manager(TimeKeeper myKeeper) {
this.keeper = myKeeper;

}
}

public class DogGroomer {
private TimeKeeper keeper;

public DogGroomer(TimeKeeper myKeeper) {
// this is the constructor!
this.keeper = myKeeper;

}
}

40 / 72
Andries van Dam © 2024 9/19/24

public class PetShop {
private DogGroomer groomer;
private Manager manager;

public PetShop() {
TimeKeeper keeper = new TimeKeeper();
this.manager = new Manager(keeper);
this.groomer = new DogGroomer(keeper);
this.testGroomer();
this.manager.makePayment(<groomer’s pay rate>);

}
// testGroomer elided

}
Somewhere in memory...

Association: Under the Hood (3/5)

The PetShop instantiates a new TimeKeeper, Manager and DogGroomer, passing the same TimeKeeper
instance in as an argument to the Manager’s and DogGroomer’s constructors

…

public class Manager {
private TimeKeeper keeper;

public Manager(TimeKeeper myKeeper) {
this.keeper = myKeeper;

}
}

public class DogGroomer {
private TimeKeeper keeper;

public DogGroomer(TimeKeeper myKeeper) {
// this is the constructor!
this.keeper = myKeeper;

}
}

41 / 72
Andries van Dam © 2024 9/19/24

public class PetShop {
private DogGroomer groomer;
private Manager manager;

public PetShop() {
TimeKeeper keeper = new TimeKeeper();
this.manager = new Manager(keeper);
this.groomer = new DogGroomer(keeper);
this.testGroomer();
this.manager.makePayment(<groomer’s pay rate>);

}
// testGroomer elided

}

public class Manager {
private TimeKeeper keeper;

public Manager(TimeKeeper myKeeper) {
this.keeper = myKeeper;

}
}

Somewhere in memory...

When the DogGroomer’s and Manager’s constructors are called, their parameter, myKeeper, points to the same
TimeKeeper that was passed in as an argument by the caller, i.e., the PetShop

…

public class DogGroomer {
private TimeKeeper keeper;

public DogGroomer(TimeKeeper myKeeper) {
this.keeper = myKeeper;

}
}

Association: Under the Hood (4/5)

42 / 72
Andries van Dam © 2024 9/19/24

public class PetShop {
private DogGroomer groomer;
private Manager manager;

public PetShop() {
TimeKeeper keeper = new TimeKeeper();
this.manager = new Manager(keeper);
this.groomer = new DogGroomer(keeper);
this.testGroomer();
this.manager.makePayment(<groomer’s pay rate>);

}
// testGroomer elided

}

public class Manager {
private TimeKeeper keeper;

public Manager(TimeKeeper myKeeper) {
this.keeper = myKeeper;

}
}

Somewhere in memory...

Association: Under the Hood (5/5)

DogGroomer and Manager set their keeper instance variable to point to the same TimeKeeper they received as
an argument. Now they “know about” the same TimeKeeper and share the same properties.

public class DogGroomer {
private TimeKeeper keeper;

public DogGroomer(TimeKeeper myKeeper) {
this.keeper = myKeeper;

}
}

…

43 / 72
Andries van Dam © 2024 9/19/24

Wrong Association
• If different instances of TimeKeeper are passed to the constructors of Manager

and DogGroomer, the DogGroomer will still log their hours, but the Manager will
not see any hours worked when computeHoursWorked is called

• This is because Manager and DogGroomer would be sending messages to
different TimeKeepers

• And each of those TimeKeepers could have different hours

• Let’s see what this looks like under the hood

44 / 72
Andries van Dam © 2024 9/19/24

public class PetShop {
private DogGroomer groomer;
private Manager manager;

public PetShop() {
this.manager = new Manager(new TimeKeeper());
this.groomer = new DogGroomer(new TimeKeeper());
this.testGroomer();
this.manager.makePayment(<groomer’s pay rate>);

}
// testGroomer elided

}

public class Manager {
private TimeKeeper keeper;

public Manager(TimeKeeper myKeeper) {
this.keeper = myKeeper;

}
}

Somewhere in memory...

Wrong Association: Under the Hood

DogGroomer and Manager set their keeper instance variable to point to different instances of TimeKeeper. A
change in one instance (e.g., when an instance variable changes) is not reflected in the other instance.

…

public class DogGroomer {
private TimeKeeper keeper;

public DogGroomer(TimeKeeper myKeeper) {
this.keeper = myKeeper;

}
}

45 / 72
Andries van Dam © 2024 9/19/24

Visualizing Association
• Note that because

TimeKeeper is not an
instance variable in PetShop,
we do not create a reference
arrow pointing from PetShop
to TimeKeeper.

• We can see that DogGroomer
and Manager ‘know about’
TimeKeeper, but the
relationship is not
symmetrical

46 / 72
Andries van Dam © 2024 9/19/24

Association as a Design Choice
● How we associate classes in our program is a design choice

○ if we had multiple employees in the PetShop, it would not make sense
to pass the same instance of TimeKeeper to all employees. Why?

■ they would all modify the same start and end instance variables

■ the Manager would need to know which employee they are paying

o in such a case, we may choose to associate the Manager with the
employees (each employee instance would have its own start and
end variables that they can modify)

• In later assignments, you will have to justify your design choices and how
you decide to associate your classes, if at all, would be one of them

47 / 72
Andries van Dam © 2024 9/19/24

TopHat Question
Which of the following lines of code would
NOT produce a compiler error, assuming
it’s written in the App class?

public class Farmer {
private Distributor dist;

public Farmer(Distributor myDist){
this.dist = myDist;

}
//other methods

}

public class Distributor {

public Distributor() {

}
//other methods

}

Farmer farmer = new Farmer(this);

Distributor dist = new Distributor(new Farmer());

Farmer farmer = new Farmer();

Farmer farmer = new Farmer(new Distributor());

A

B

C

D

48 / 72
Andries van Dam © 2024 9/19/24

Outline

● Accessors and Mutators

● Association

o Association with intermediary

o Component-Container Association

o Two-way Association

49 / 72
Andries van Dam © 2024 9/19/24

Two-way Association
● In the previous example, we showed how two classes can communicate with

each other
o Orchestra is composed of Conductor, thus can send messages to it
o Conductor knows about its container Orchestra, thus can send messages to it too

● Also shown how two classes can communicate with a third class with no
component-container relationships
o Both Manager and DogGroomer can send messages to the same instance of

TimeKeeper, but the association isn’t bidirectional
● Sometimes, want to model peer classes, say, A and B, where neither is a

component of the other and we want the communication to be bidirectional
without an intermediate class

● We can set up a two-way association where class A knows about B and vice
versa

● Let’s see an example

50 / 72
Andries van Dam © 2024 9/19/24

public class CS15Professor {

// declare instance variables here
// and here…
// and here…
// and here!

public CS15Professor(/* parameters */) {

// initialize instance variables!
// …
// …
// …

}

/* additional methods elided */
}

● Here we have the class
CS15Professor

● We want CS15Professor to
know about his Head TAs ─
he didn’t create them or vice
versa, so neither is a
component of the other

● And we also want Head TAs
to know about
CS15Professor

● Let’s set up associations!

Example: Motivation for Association (1/10)

51 / 72
Andries van Dam © 2024 9/19/24

Example: Motivation for Association (2/10)
● The CS15Professor needs to

know about 5 Head TAs, all of
whom will be instances of the
class HTA

● Once he knows about them, he
can call methods of the class
HTA on them: remindHTA,
setUpLecture, etc.

● Take a minute and try to fill in
this class

public class CS15Professor {

// declare instance variables here
// and here…
// and here…
// and here!

public CS15Professor(/* parameters */) {

// initialize instance variables!
// …
// …
// …

}

/* additional methods elided */
}

52 / 72
Andries van Dam © 2024 9/19/24

Example: Setting up Association (3/10)
public class CS15Professor {

private HTA hta1;
private HTA hta2;
private HTA hta3;
private HTA hta4;
private HTA hta5;

public CS15Professor(HTA firstTA,
HTA secondTA, HTA thirdTA,
HTA fourthTA, HTA fifthTA) {

this.hta1 = firstTA;
this.hta2 = secondTA;
this.hta3 = thirdTA;
this.hta4 = fourthTA;
this.hta5 = fifthTA;

}

/* additional methods elided */
}

● Our solution: we record passed-in
HTAs created by whatever object
creates CS15Professor and
HTAs, e.g., CS15_2024

● Remember, you can choose your
own names for the instance
variables and parameters

● The CS15Professor can now
send a message to one of his
HTAs like this:

this.hta2.setUpLecture();

53 / 72
Andries van Dam © 2024 9/19/24

public class CS15_2024 {

// declare CS15Professor instance var
// declare five HTA instance vars
// …
// …
// …

public CS15_2024() {
// instantiate the professor!
// …
// …
// instantiate the five HTAs

}
}

● We’ve got the CS15Professor
class down

● Now let’s create a Professor
and Head TAs from a class
that is composed of all of them:
CS15_2024
o The constructor will be called by

the App class

● Try and fill in this class!
o you can assume that the HTA

class takes no parameters in its
constructor

Example: Using the Association (4/10)

54 / 72
Andries van Dam © 2024 9/19/24

public class CS15_2024 {
private CS15Professor andy;
private HTA chloe;
private HTA grace;
private HTA ilan;
private HTA karim;
private HTA sarah;

public CS15_2024() {
this.chloe = new HTA();
this.grace = new HTA();
this.ilan = new HTA();
this.karim = new HTA();
this.sarah = new HTA();
this.andy = new

CS15Professor(this.chloe,
this.grace, this.ilan,
this.karim, this.sarah);

}
}

● We declare chloe, grace,
ilan, karim, and sarah as
instance variables - they are
peers

● In the constructor, we
instantiate them

● Since the constructor of
CS15Professor takes in 5
HTAs, we pass in chloe,
grace, ilan, karim, and
sarah

Example: Using the Association (5/10)

55 / 72
Andries van Dam © 2024 9/19/24

Example: Using the Association (6/10)
public class CS15_2024 {

private CS15Professor andy;
private HTA chloe;
private HTA grace;
private HTA ilan;
private HTA karim;
private HTA sarah;

public CS15_2024() {
this.chloe = new HTA();
this.grace = new HTA();
this.ilan = new HTA();
this.karim = new HTA();
this.sarah = new HTA();
this.andy = new

CS15Professor(this.chloe,
this.grace, this.ilan,
this.karim, this.sarah);

}
}

public class CS15Professor {

private HTA hta1;
private HTA hta2;
private HTA hta3;
private HTA hta4;
private HTA hta5;

public CS15Professor(HTA firstTA,
HTA secondTA, HTA thirdTA
HTA fourthTA, HTA fifthTA) {

this.hta1 = firstTA;
this.hta2 = secondTA;
this.hta3 = thirdTA;
this.hta4 = fourthTA;
this.hta5 = fifthTA;

}

/* additional methods elided */
}

56 / 72
Andries van Dam © 2024 9/19/24

More Associations (7/10)
● Now the CS15Professor

can call on the HTAs but can
the HTAs call on the
CS15Professor too?

● No! Need to set up another
association

● Can we just do the same
thing and pass this.andy
as a parameter into each
HTAs constructor?

public class CS15_2024 {

private CS15Professor andy;
private HTA chloe;
private HTA grace;
private HTA ilan;
private HTA karim;
private HTA sarah;

public CS15_2024() {
this.chloe = new HTA();
this.grace = new HTA();
this.ilan = new HTA();
this.karim = new HTA();
this.sarah = new HTA();
this.andy = new

CS15Professor(this.chloe,
this.grace, this.ilan,
this.karim, this.sarah);

}
}

Code
from
previous
slide

57 / 72
Andries van Dam © 2024 9/19/24

● When we instantiate chloe,
grace, ilan, karim, and sarah,
we would like to use a modified
HTA constructor that takes an
argument, this.andy

● But this.andy hasn’t been
instantiated yet (will get a
NullPointerException)! And
we can’t initialize andy first
because the HTAs haven’t been
created yet…

● How to break this deadlock?

More Associations (8/10)

Code
from
previous
slide

public class CS15_2024 {

private CS15Professor andy;
private HTA chloe;
private HTA grace;
private HTA ilan;
private HTA karim;
private HTA sarah;

public CS15_2024() {
this.chloe = new HTA();
this.grace = new HTA();
this.ilan = new HTA();
this.karim = new HTA();
this.sarah = new HTA();
this.andy = new

CS15Professor(this.chloe,
this.grace, this.ilan,
this.karim, this.sarah);

}
}

58 / 72
Andries van Dam © 2024 9/19/24

● To break this deadlock, we
need to have a new mutator

● First, instantiate chloe, grace,
ilan, karim, and sarah, then
instantiate andy

● Use a new mutator, setProf, in
the HTA body and pass andy to
each HeadTA to record the
association

public class CS15_2024 {

private CS15Professor andy;
private HTA chloe;
private HTA grace;
private HTA ilan;
private HTA karim;
private HTA sarah;

public CS15_2024() {
this.chloe = new HTA();
this.grace = new HTA();
this.ilan = new HTA();
this.karim = new HTA();
this.sarah = new HTA();
this.andy = new CS15Professor(this.chloe,

this.grace, this.ilan, this.karim,
this.sarah);

this.chloe.setProf(this.andy);
this.grace.setProf(this.andy);
this.ilan.setProf(this.andy);
this.karim.setProf(this.andy);
this.sarah.setProf(this.andy);

}
}

More Associations (9/10)

59 / 72
Andries van Dam © 2024 9/19/24

public class HTA {

private CS15Professor professor;

public HTA() {
//other code elided

}
public void setProf(CS15Professor myProf)
{

this.professor = myProf;
}

}

● Now each HTA will know
about andy!

More Associations (10/10)
public class CS15_2024 {

private CS15Professor andy;
private HTA chloe;
private HTA grace;
private HTA ilan;
private HTA karim;
private HTA sarah;

public CS15_2024() {
this.chloe = new HTA();
this.grace = new HTA();
this.ilan = new HTA();
this.karim = new HTA();
this.sarah = new HTA();
this.andy = new CS15Professor(this.chloe,

this.grace, this.ilan, this.karim,
this.sarah);

this.chloe.setProf(this.andy);
this.grace.setProf(this.andy);
this.ilan.setProf(this.andy);
this.karim.setProf(this.andy);
this.sarah.setProf(this.andy);

}
}

60 / 72
Andries van Dam © 2024 9/19/24

More Associations
● But what happens if setProf is never called?

● Will the HTAs be able to call methods on the
CS15Professor?

● No! We would get a NullPointerException!
o remember: NullPointerExceptions occur at
runtime when a variable’s value is null, and you try
to give it a command

61 / 72
Andries van Dam © 2024 9/19/24

Class Diagram

62 / 72
Andries van Dam © 2024 9/19/24

Summary
Important Concepts:

• In OOP, it’s necessary for classes to interact with each other to accomplish
specific tasks
• Delegation allows us to have multiple classes and specify how their

instances can relate with each other. Today, we learned an important way to
to establish these relationships:

o association, where one class knows about an instance of another
class and call methods on it
o Notice that classes are considered to be “associated with”

instance variables that represent their components.
• Delegation and association are some of the many “design pattern” we will

learn about in CS15. Stay tuned for more design patterns and discussion
about design in later lectures.

63 / 72
Andries van Dam © 2024 9/19/24

Announcements
• Pong comes out today!

o Due Monday 9/23 at 11:59 PM EST
o No early or late hand in!

• HTA Hours
o Fridays 3:00 – 4:00 PM at CIT 209
o Not for project help – logistical questions only

• Movie night tonight!
o Metcalf Auditorium @ 7:30pm

o Fritz Lang’s 1927 Metropolis

• Section Swaps
o Deadline to make permanent swaps Friday 09/20 (tomorrow)

• CS15 Mentorship!
o If you have not gotten an assignment email and wanted to participate in the mentorship program, email the

HTAs

64 / 72
Andries van Dam © 2024 9/19/24

65 / 72
Andries van Dam © 2024 9/19/24

Review: Variables

● Store information either as a value of a primitive or as a
reference to an instance
int favNumber = 9;

Dog effie = new Dog();

<type> <name> = <value>;

declaration initialization

66 / 72
Andries van Dam © 2024 9/19/24

Review: Local vs. Instance Variables (1/2)
● Local variables are

declared inside a method
and cannot be accessed
from any other method

● Once the method has
finished executing, they
are garbage collected

public class PetShop {

// This is the constructor!
public PetShop() {

this.testGroomer();
}

public void testGroomer() {
Dog effie = new Dog();
DogGroomer groomer = new DogGroomer();
groomer.trimFur(effie);
effie = new Dog();
groomer.trimFur(effie);

}

}

Local Variables

67 / 72
Andries van Dam © 2024 9/19/24

● Instance variables model
properties that all instances of a
class have – attributes,
components, and references to
other classes

● Instance variables are
accessible from anywhere
within the class — their scope
is the entire class

● The purpose of a constructor is
to initialize all instance
variables

public class PetShop {
private DogGroomer groomer;

public PetShop() {
this.groomer = new DogGroomer();
this.testGroomer();

}
// testGroomer elided

}

declaration

initialization

Review: Local vs. Instance Variables (2/2)

68 / 72
Andries van Dam © 2024 9/19/24

● After giving a variable an initial value or reference, we can reassign it
(make it store a different instance)

● When reassigning a variable, we do not declare its type again, Java
remembers it from the first assignment

Dog effie = new Dog();
Dog appa = new Dog();
effie = appa; // reassign effie

● effie now stores a different dog (another instance of Dog),
specifically the one that was appa. The initial dog stored by effie is
garbage collected

Review: Variable Reassignment

69 / 72
Andries van Dam © 2024 9/19/24

● Methods can take in class instances as parameters

public void trimFur(Dog shaggyDog) {

// code that trims the fur of shaggyDog

}

● When calling the method above, every dog passed as
an argument, e.g., effie, will be thought of as
shaggyDog, a synonym, in the method

Review: Instances as Parameters

70 / 72
Andries van Dam © 2024 9/19/24

● Delegation allows us to separate different sets of functionalities
and assign them to other classes

● With delegation, we’ll use multiple classes to accomplish one
task. A side effect of this is we need to set up relationships
between classes for their instances to communicate

● Association is an important design pattern used to establish
these class relationships. We’ll learn about it today. Stay tuned!

Review: Delegation Pattern

71 / 72
Andries van Dam © 2024 9/19/24

Review: NullPointer Exceptions

• What happens if you fail to
initialize an instance
variable in the
constructor?
o instance variable groomer

never initialized so default
value is null

o when a method is called on
groomer we get a
NullPointerException

public class PetShop {

private DogGroomer groomer;

public PetShop() {
//oops! Forgot to initialize groomer
this.testGrooming();

}
public void testGrooming() {

Dog effie = new Dog(); //local var
this.groomer.trimFur(effie);

}
}

NullPointerException

72 / 72
Andries van Dam © 2024 9/19/24

Review: Encapsulation
• In CS15, instance variables should be declared as private
• Why? Encapsulation for safety purposes

o your properties are your private business

• If public, instance variables would be accessible from any class. There
would be no way to restrict other classes from modifying them

• Private instance variables also allow for a chain of abstraction, so
classes don’t need to worry about the inner workings of their
components

• We’ll learn safe ways of allowing external classes to access instance
variables

