
1/73
Andries van Dam © 2024 9/17/24

Get to know your class!
● Your classmates are concentrating in…

○ CS, APMA, Econ, Math, IAPA, English, Music, History, and
more!

○ And plenty are unsure…that’s ok too!

● This course is roughly 43% female and 55%
male

● 95% Brown students, 5% RISD students

● Why are you all taking this class?

“It’s a requirement

for my degree

“I want to learn the basics of coding” “For fun!”

“The skits :)”
“The most exciting intro course”

2/73
Andries van Dam © 2024 9/17/24

Lecture 4
Working with Objects: Part 1

3/73
Andries van Dam © 2024 9/17/24

Review Slides at End
of Deck

4/73
Andries van Dam © 2024 9/17/24

Outline

● Storing values in variables

● Instances as parameters

● Variable reassignment

● Delegation pattern

● Instance variables

5/73
Andries van Dam © 2024 9/17/24

Variables
● Once we create a Dog instance, we want to be able to give it

commands by calling methods on it!

● To do this, we need to name our Dog

● Can name an instance by storing it in a variable

Dog effie = new Dog();

● In this case, effie is the variable, and it stores a newly created
instance of Dog

o the variable name effie is also known as an “identifier”

o Dog() is an invocation of the constructor for the Dog class

● Now we can call methods on effie, a specific instance of Dog

o i.e., effie.wagTail();

6/73
Andries van Dam © 2024 9/17/24

Syntax: Variable Declaration and Assignment
● We can both declare and assign (i.e., initialize) a variable in a single

statement, like: Dog effie = new Dog();

<type> <name> = <value>;

● The “=” operator assigns the instance of Dog that we created to the
variable effie. We say “effie gets a new Dog”

● Note: type of value must match declared type on left

● We can reassign a variable as many times as we like (example soon)

declaration Instantiation, followed by assignment using =

7/73
Andries van Dam © 2024 9/17/24

Assignment vs. Equality

In Java:

price = price + 1;

• Means “add 1 to the current value
of price and assign that to price”

In Algebra:

• price = price + 1 is a logical
contradiction

8/73
Andries van Dam © 2024 9/17/24

● A variable stores information as either:

o a value of a primitive (aka base) type (like int or float)

o a reference to an instance (like an instance of Dog) of an
arbitrary type stored elsewhere in memory

▪ we symbolize a reference with an arrow

● Think of the variable like a box; storing a value or
reference is like putting something into the box

● Primitives have a predictable memory size, while
instances of classes vary in size. Thus, Java simplifies
memory management by having a fixed size reference to
an instance elsewhere in memory

o “one level of indirection”

int favNumber = 9;

Dog effie = new Dog();

favNumber

9

effie

(somewhere else in memory)

Values vs. References

9/73
Andries van Dam © 2024 9/17/24

TopHat Question Join Code: 316062

Given this code, fill in the blanks:

Variable x stores a _____, and myCalc stores a _______.

A. value, value
B. value, reference
C. reference, value
D. reference, reference

int x = 5;
Calculator myCalc = new Calculator();

10/73
Andries van Dam © 2024 9/17/24

Example: Instantiation (1/2)
● Let’s define a new class

PetShop which has a

testEffie() method
o don’t worry if the example

seems a bit contrived…

● Whenever someone instantiates
a PetShop, its constructor is

called, which calls testEffie()

● Then testEffie() instantiates

a Dog and tells it to bark, eat,

and wag its tail (see definition of

Dog for what these methods do)

public class PetShop {

//constructor

public PetShop() {

this.testEffie();

}

public void testEffie() {

Dog effie = new Dog();

effie.bark(5);

effie.eat();

effie.wagTail();

}

}

11/73
Andries van Dam © 2024 9/17/24

Another Example: Instantiation (2/2)
● Another example: can instantiate a

MathStudent and then call that

instance to perform a simple, fixed,

calculation, called

performCalculation()

● First, instantiate a new Calculator

and store its reference in variable

named myCalc

● Next, tell myCalc to add 2 to 6 and

store result in variable named answer

● Finally, use System.out.println to

print value of answer to the console!

public class MathStudent {

/* constructor elided */

public void performCalculation() {
Calculator myCalc = new Calculator();
int answer = myCalc.add(2, 6);
System.out.println(answer);

}

/* add() method elided */
...

}

12/73
Andries van Dam © 2024 9/17/24

Outline

● Storing values in variables

● Instances as parameters

● Variable reassignment

● Delegation pattern

● Instance variables

13/73
Andries van Dam © 2024 9/17/24

Instances as Parameters (1/3)
● Methods can take in not just

numbers but also instances as

parameters

● The PetShop class has a

method trimFur()

● trimFur method needs to know

which Dog instance to trim the

fur of

public class PetShop {

public PetShop() {

// this is the constructor!

}

public void trimFur(Dog shaggyDog) {

// code that trims the fur of shaggyDog

}

}

● Method calling trimFur will have to supply as argument a

specific instance of a Dog, called shaggyDog in trimFur

● Analogous to void moveForward(int numberOfSteps);

name of

specific
instance

type/class

14/73
Andries van Dam © 2024 9/17/24

● Where to call the PetShop’s
trimFur method?

● Do this in the method
testGrooming(), a “helper”
method

● Call to testGrooming()
instantiates a PetShop and a
Dog, then calls the PetShop to
trimFur of the Dog

● First two lines could be in
either order, since they are
instantiated adjacently

public class App {

public static void main(String[] args) {

this.testGrooming();

}

public void testGrooming() {

PetShop sarahsPetShop = new PetShop();

Dog effie = new Dog();

sarahsPetShop.trimFur(effie);

}

}

Instances as Parameters (2/3)

Dog PetShopApp

15/73
Andries van Dam © 2024 9/17/24

1. In App’s main method, call to
testGrooming() helper method.

2. A PetShop is instantiated (thereby
calling PetShop’s constructor) and a
reference to it is stored in the variable
sarahsPetShop

3. Next, a Dog is instantiated (thereby
calling Dog’s constructor) and a reference
to it is stored in the variable effie

4. The trimFur method is called on
sarahsPetShop, passing in effie as
an argument

5. sarahsPetShop trims effie’s fur;
trimFur in sarahsPetShop will think of
effie as shaggyDog, a synonym

public class App {

public static void main(String[] args) {

this.testGrooming();

}

public void testGrooming() {

PetShop sarahsPetShop = new PetShop();

Dog effie = new Dog();

sarahsPetShop.trimFur(effie);

// exit method, effie and

// groomer disappear

}

}

public class PetShop {

/* constructor elided */

public void trimFur(Dog shaggyDog) {

// code that trims the

// fur of shaggyDog argument

}

}

Code

from

slide

14

Instances as Parameters (3/3): Flow of Control

1.

2.

4.

3.

5.

Code

from

slide

13

16/73
Andries van Dam © 2024 9/17/24

What is Memory?
● Memory (“system memory” aka

RAM, not disk or other peripheral
devices) is the hardware in which
computers store information during
computation

● Think of memory as a list of slots;
each slot holds information (e.g., an
int variable, or a reference to an
instance of a class)

● Here, two references are stored in
memory: one to a Dog instance,
and one to a PetShop instance

public class App

public static void main(String[] args) {

this.testGrooming();

}

public void testGrooming() {

PetShop sarahsPetShop = new PetShop();

Dog effie = new Dog();

sarahsPetShop.trimFur(effie);

}

}

Dog
PetShop

App

17/73
Andries van Dam © 2024 9/17/24

Instances as Parameters: Under the Hood (1/6)

Somewhere in memory...

Note: Recall that in Java, each class is stored in its own file. Thus, when creating a program with multiple classes, the

program will work as long as all classes are written before the program is run. Order doesn’t matter.

public class App {

public static void main(String[] args) {

this.testGrooming();

}

public void testGrooming() {

PetShop sarahsPetShop = new PetShop();

Dog effie = new Dog();

sarahsPetShop.trimFur(effie);

}

}

public class PetShop {

public PetShop() {

// this is the constructor!

}

public void trimFur(Dog shaggyDog) {

// code that trims the fur of shaggyDog

}

}

18/73
Andries van Dam © 2024 9/17/24

Instances as Parameters: Under the Hood (2/6)

Somewhere in memory...

public class App {

public static void main(String[] args) {

this.testGrooming();

}

public void testGrooming() {

PetShop sarahsPetShop = new PetShop();

Dog effie = new Dog();

sarahsPetShop.trimFur(effie);

}

}

public class PetShop {

public PetShop() {

// this is the constructor!

}

public void trimFur(Dog shaggyDog) {

// code that trims the fur of shaggyDog

}

}

When we instantiate a PetShop, it’s stored somewhere in memory. Our App will use the name
sarahsPetShop to refer to this particular PetShop, at this particular location in memory.

19/73
Andries van Dam © 2024 9/17/24

Instances as Parameters: Under the Hood (3/6)

Somewhere in memory...

public class App {

public static void main(String[] args) {

this.testGrooming();

}

public void testGrooming() {

PetShop sarahsPetShop = new PetShop();

Dog effie = new Dog();

sarahsPetShop.trimFur(effie);

}

}

public class PetShop {

public PetShop() {

// this is the constructor!

}

public void trimFur(Dog shaggyDog) {

// code that trims the fur of shaggyDog

}

}

Same goes for the Dog—we store a particular Dog somewhere in memory. Our App knows this
Dog by the name effie.

…
Usually not

adjacent in

memory!

20/73
Andries van Dam © 2024 9/17/24

Instances as Parameters: Under the Hood (4/6)

Somewhere in memory...

public class App {

public static void main(String[] args) {

this.testGrooming();

}

public void testGrooming() {

PetShop sarahsPetShop = new PetShop();

Dog effie = new Dog();

sarahsPetShop.trimFur(effie);

}

}

public class PetShop {

public PetShop() {

// this is the constructor!

}

public void trimFur(Dog shaggyDog) {

// code that trims the fur of shaggyDog

}

}

We call the trimFur method on our PetShop, sarahsPetShop. We need to tell it which Dog to
trimFur (since the trimFur method takes in a parameter of type Dog). We tell it to trim effie.

…
Usually not

adjacent in

memory!

21/73
Andries van Dam © 2024 9/17/24

Instances as Parameters: Under the Hood (5/6)

Somewhere in memory...

public class App {

public static void main(String[] args) {

this.testGrooming();

}

public void testGrooming() {

PetShop sarahsPetShop = new PetShop();

Dog effie = new Dog();

sarahsPetShop.trimFur(effie);

}

}

public class PetShop {

public PetShop() {

// this is the constructor!

}

public void trimFur(Dog shaggyDog) {

// code that trims the fur of shaggyDog

}

}

When we pass in effie as an argument to the trimFur method, we’re telling the trimFur
method about her. When trimFur executes, it sees that it has been passed that particular Dog.

…
Usually not

adjacent in

memory!

22/73
Andries van Dam © 2024 9/17/24

Instances as Parameters: Under the Hood (6/6)

Somewhere in memory...

public class App {

public static void main(String[] args) {

this.testGrooming();

}

public void testGrooming() {

PetShop sarahsPetShop = new PetShop();

Dog effie = new Dog();

sarahsPetShop.trimFur(effie);

}

}

public class PetShop {

public PetShop() {

// this is the constructor!

}

public void trimFur(Dog shaggyDog) {

// code that trims the fur of shaggyDog

}

}

The trimFur method doesn’t really care which Dog it’s told to trimFur—no matter what another
instance’s name for the Dog is, trimFur is going to know it by the name shaggyDog.

…
Usually not

adjacent in

memory!

23/73
Andries van Dam © 2024 9/17/24

Outline

● Storing values in variables

● Instances as parameters

● Variable reassignment

● Delegation pattern

● Instance variables

24/73
Andries van Dam © 2024 9/17/24

Variable Reassignment (1/3)

● After giving a variable an initial

value or reference, we can

reassign it (make it refer to a

different instance)

● What if we wanted our PetShop to

trimFur two different Dogs?

● Could create another variable, or

re-use the variable effie to first

point to one Dog, then another!

public class App {

public static void main(String[] args) {

this.testGrooming();

}

public void testGrooming() {

PetShop sarahsPetShop = new PetShop();

Dog effie = new Dog();

sarahsPetShop.trimFur(effie);

}

}

25/73
Andries van Dam © 2024 9/17/24

Variable Reassignment (2/3)

● First, instantiate another Dog, and

reassign variable effie to point

to it

● Now effie no longer refers to the

first Dog instance we created,

which was already groomed

● Then tell PetShop to trimFur the

new Dog. It will also be known as

shaggyDog inside the trimFur

method

public class App {

public static void main(String[] args) {

this.testGrooming();

}

public void testGrooming() {

PetShop sarahsPetShop = new PetShop();

Dog effie = new Dog();

sarahsPetShop.trimFur(effie);

effie = new Dog(); // reassign effie

sarahsPetShop.trimFur(effie);

}

}

26/73
Andries van Dam © 2024 9/17/24

Variable Reassignment (3/3)
● When we reassign a variable, we do not declare its type again, Java

remembers from first time

● Can reassign to a brand new instance (like in PetShop) or to an already

existing instance by using its identifier

● Now effie and appa refer to the same Dog, specifically the one that was

originally referenced by appa

Dog effie = new Dog();
Dog appa = new Dog();
effie = appa; // reassigns effie to refer to the same Dog as appa

27/73
Andries van Dam © 2024 9/17/24

public class App {

public static void main(String[] args) {

this.testGrooming();

}

public void testGrooming() {

PetShop sarahsPetShop = new PetShop();

Dog effie = new Dog();

sarahsPetShop.trimFur(effie);

effie = new Dog();

sarahsPetShop.trimFur(effie);

}

}

}

Variable Reassignment: Under the Hood (1/5)

28/73
Andries van Dam © 2024 9/17/24

public class App {

public static void main(String[] args) {

this.testGrooming();

}

public void testGrooming() {

PetShop sarahsPetShop = new PetShop();

Dog effie = new Dog();

sarahsPetShop.trimFur(effie);

effie = new Dog();

sarahsPetShop.trimFur(effie);

}

}

}

Variable Reassignment: Under the Hood (2/5)

29/73
Andries van Dam © 2024 9/17/24

public class App {

public static void main(String[] args) {

this.testGrooming();

}

public void testGrooming() {

PetShop sarahsPetShop = new PetShop();

Dog effie = new Dog();

sarahsPetShop.trimFur(effie);

effie = new Dog();

sarahsPetShop.trimFur(effie);

}

}

}

Variable Reassignment: Under the Hood (3/5)

30/73
Andries van Dam © 2024 9/17/24

public class App {

public static void main(String[] args) {

this.testGrooming();

}

public void testGrooming() {

PetShop sarahsPetShop = new PetShop();

Dog effie = new Dog();

sarahsPetShop.trimFur(effie);

effie = new Dog();

sarahsPetShop.trimFur(effie);

}

}

}

Variable Reassignment: Under the Hood (4/5)

//old ref garbage collected – stay tuned!

31/73
Andries van Dam © 2024 9/17/24

public class App {

public static void main(String[] args) {

this.testGrooming();

}

public void testGrooming() {

PetShop sarahsPetShop = new PetShop();

Dog effie = new Dog();

sarahsPetShop.trimFur(effie);

effie = new Dog();

sarahsPetShop.trimFur(effie);

}

}

}

Variable Reassignment: Under the Hood (5/5)

//old ref garbage collected – stay tuned!

32/73
Andries van Dam © 2024 9/17/24

Outline

● Storing values in variables

● Instances as parameters

● Variable reassignment

● Delegation pattern

● Instance variables

33/73
Andries van Dam © 2024 9/17/24

Adding PetShop Capabilities

• The PetShop only has the
capability (method) to trimFur

• What if we want the PetShop to
expand with more functionality?

• PetShop class would be long!

• trimFur

• shampooFur

• dryFur

• teachSit

• teachBark

• teachFetch

• sellDogToy

• and more…

34/73
Andries van Dam © 2024 9/17/24

Delegation Pattern (1/4)

• Just like a real-life pet shop would hire employees to
delegate work, we should create new classes to
delegate code

• Pass responsibility to something / someone else to
manage parts of a task

• PetShop doesn’t need to care how the dog gets trimmed,
if it gets done properly

35/73
Andries van Dam © 2024 9/17/24

Delegation Pattern (2/4)

• Delegation results in a chain of abstraction, where each
level deals with more specifics to complete an action

Please groom my

dog!

Wash this dog with

shampoo, then trim its

hair and dry!

Fill the bath with warm

water until it’s two-

thirds full…

DogOwner PetShop DogGroomer

Bath

HairDryer

Clippers

36/73
Andries van Dam © 2024 9/17/24

Delegation Pattern (3/4)

• We delegate
responsibilities to
DogGroomer!

• trimFur, shampooFur,
dryFur become a
capability of DogGroomer
instead of PetShop

• teachSit and
teachBark can be
delegated to DogTrainer

public class DogGroomer {
/* constructor elided */

public void trimFur(Dog shaggyDog) {
//code that trims the fur of shaggyDog

}

public void shampooFur(Dog dirtyDog) {
//code that shampoos the fur of dirtyDog

}

public void dryFur(Dog wetDog) {
//code that dries the fur of wetDog

}
}

37/73
Andries van Dam © 2024 9/17/24

Delegation Pattern (4/4)

• Now that we’ve delegated
responsibilities to the
DogGroomer, the PetShop can
instantiate a DogGroomer

• In the testGrooming method,
PetShop can call DogGroomer’s
methods on groomer

• It may seem unnatural to
instantiate a DogGroomer in a
method of the PetShop class, but
it works in the kind of modeling
that OOP makes possible

public class PetShop {

public PetShop() {

this.testGrooming();

}

public void testGrooming() {

DogGroomer groomer = new DogGroomer();

Dog effie = new Dog();

groomer.shampooFur(effie);

groomer.trimFur(effie);

groomer.dryFur(effie);

}
}

(Notice the methods being called on groomer
are defined in DogGroomer)

38/73
Andries van Dam © 2024 9/17/24

Delegating to Top-Level Class (1/2)

• App class should never
have more than a few
lines of code

• Can we delegate
testGrooming to a
different class?

public class App {

public static void main(String[] args) {

this.testGrooming();

}

public void testGrooming() {

DogGroomer groomer = new DogGroomer();

Dog effie = new Dog();

groomer.shampooFur(effie);

groomer.trimFur(effie);

groomer.dryFur(effie);

}

}

39/73
Andries van Dam © 2024 9/17/24

Delegating to Top-Level Class (2/2)

• Top-level class is class that contains
high-level logic of program

• App delegates to top-level class (here,
PetShop) to simplify App as much as
possible

• Same functionality of the program, with
a different code design

o easier to visually follow program’s high-
level control flow

• As CS15 programs increase in
complexity, purpose of separating top-
level class from App will become clearer

public class App {
public static void main(String[] args) {

new PetShop();
}

}

public class PetShop {
public PetShop() {

this.testGrooming();
}

public void testGrooming() {
DogGroomer groomer = new DogGroomer();
Dog effie = new Dog();
groomer.shampooFur(effie);
groomer.trimFur(effie);
groomer.dryFur(effie);

}
}

40/73
Andries van Dam © 2024 9/17/24

TopHat Question Join Code: 316062

Which of the following is NOT true?

A. App should delegate to the top-level class
B. The App class should never have more than a few

lines of code
C. The top-level class should instantiate App
D. The top-level class contains high-level logic of program

41/73
Andries van Dam © 2024 9/17/24

Design Patterns and Principles

• Delegation is the first design pattern we’re learning

• We’ll learn many throughout the course – these are crucial to OOP

• OOP is about much more than functionality of programs

o PetShop could operate fine without DogGroomer or DogTrainer;
delegating is our design choice to make code easier to read,
more modular and extensible

• Later, assignment grades will be based as much on your design
choices as functionality

• In future projects, YOU will have to decide how to delegate your
program to different classes!

o (not quite yet though)

42/73
Andries van Dam © 2024 9/17/24

Outline

● Storing values in variables

● Instances as parameters

● Variable reassignment

● Delegation pattern

● Instance variables

43/73
Andries van Dam © 2024 9/17/24

Local Variables (1/2)

● All variables we’ve seen so
far have been local
variables: variables declared
inside a method

● Problem: the scope of a
local variable (where it is
known and can be accessed)
is limited to its own method—
it cannot be accessed from
anywhere else

o same is true of method’s
parameters

public class PetShop {

public PetShop() {

this.testGrooming();

}

public void testGrooming() {

Dog effie = new Dog();

DogGroomer groomer = new DogGroomer();

groomer.shampooFur(effie);

groomer.trimFur(effie);

groomer.dryFur(effie);

}

}

local variables

44/73
Andries van Dam © 2024 9/17/24

Local Variables (2/2)

● We created groomer and

effie in our PetShop’s

testGrooming method, but as

far as the rest of the class is

concerned, they don’t exist

and cannot be used

● Once the method is completely

executed, they’re gone :(

o this is known as “Garbage

Collection”

public class PetShop {

public PetShop() {

this.testGrooming();

}

public void testGrooming() {

Dog effie = new Dog();

DogGroomer groomer = new DogGroomer();

groomer.shampooFur(effie);

groomer.trimFur(effie);

groomer.dryFur(effie);

}

}

local variables

45/73
Andries van Dam © 2024 9/17/24

Garbage Collection

● If an instance referred to by a variable goes

out of scope, we can no longer access it.

Because we can’t access the instance, it

gets garbage collected

o in garbage collection, the space that the instance

took up in memory is freed and the instance no

longer exists

●Lose access to an instance when:

o at the end of method execution, local variables

created within that method go out of scope

o variables lose their reference to an instance
during variable reassignment (effie, slide 35)

46/73
Andries van Dam © 2024 9/17/24

Accessing Local Variables

● If you try to access a local
variable outside of its
method, you’ll receive a
“cannot find symbol”
compilation error:

public class PetShop {

public PetShop() {

DogGroomer groomer = new DogGroomer();

this.cleanShop();

}

public void cleanShop() {

//assume we’ve added a sweep method

//to DogGroomer

groomer.sweep();

}

}

In Terminal after javac *.java:
PetShop.java:13: error: cannot find symbol

groomer.sweep();
^

symbol: variable groomer
location: class PetShop

scope of groomer

47/73
Andries van Dam © 2024 9/17/24

Introducing… Instance Variables!

● Local variables aren’t always what we want. We’d like

every PetShop to come with a DogGroomer who exists

for as long as the PetShop exists

● That way, as long as the PetShop is in business, we’ll

have our DogGroomer on hand

● We accomplish this by storing the DogGroomer in an

instance variable

48/73
Andries van Dam © 2024 9/17/24

What’s an Instance Variable?
● An instance variable models a property that all instances of

a class have

o its value can differ from instance to instance

● Instance variables are declared within a class, not within a
single method, and therefore are accessible from anywhere
within the class, unlike local variables – their scope is the
entire class

● Instance variables and local variables are identical in terms of
what they can store—either can store a base type (like an
int) or a reference to an instance of some other class

49/73
Andries van Dam © 2024 9/17/24

Instance Variables (1/4)

● We’ve modified PetShop example to make
our DogGroomer an instance variable for the
benefit of multiple methods

● Split up declaration and assignment of
instance variable:

o declare instance variable at the top of the class
above the constructor, to notify Java compiler

o initialize the instance variable by assigning a value
to it in the constructor

o primary purpose of constructor is to initialize all
instance variables so each instance has a valid
initial “state” at its “birth”; typically does no
other work

o state is the set of all values for all properties—local
variables don’t hold properties; they are
“temporaries”. State typically varies over time

public class PetShop {

private DogGroomer groomer;

public PetShop() {

this.groomer = new DogGroomer();

this.testGrooming();

}

public void testGrooming() {

Dog effie = new Dog();

this.groomer.trimFur(effie);

}

public void payGroomer () {

this.groomer.getPaidDollars(5);

}

}

declaration

initialization

instance

variable

local

variable

50/73
Andries van Dam © 2024 9/17/24

● Like we use this when an

instance calls a method on itself,
we also use this when an

instance references one of its

instance variables after

declaration
o Java compiler will work without it, but

required in CS15 to easily

distinguish instance variables from

local variables

● Thus, we use this to refer to

capabilities (methods) and

properties (instance variables) of

an instance

Instance Variables (2/4)

public class PetShop {

private DogGroomer groomer;

public PetShop() {

this.groomer = new DogGroomer();

this.testGrooming();

}

public void testGrooming() {

Dog effie = new Dog();//local var

this.groomer.trimFur(effie);

}

//payGroomer() method elided

}

51/73
Andries van Dam © 2024 9/17/24

● Note we include the keyword

private in declaration of our

instance variable

● private is an access modifier,

just like public, which we’ve been

using in our method declarations

Instance Variables (3/4)
access modifier

public class PetShop {

private DogGroomer groomer;

public PetShop() {

this.groomer = new DogGroomer();

this.testGrooming();

}

public void testGrooming() {

Dog effie = new Dog();//local var

this.groomer.trimFur(effie);

}

//payGroomer() method elided

}

52/73
Andries van Dam © 2024 9/17/24

● If declared as private, the method or

instance variable can only be accessed

inside the class – their scope is entire class

● If declared as public, can be accessed from

anywhere – their scope can include multiple

classes – very unsafe!

● In CS15, you’ll declare instance variables
as private, with rare exception!

● Note that local variables don’t have access

modifiers – their scope is always the method
they are declared in.

● Note: instance variables are private, to

protect them, methods are public for the

use by any instance

Instance Variables (4/4)

access modifier

public class PetShop {

private DogGroomer groomer;

public PetShop() {

this.groomer = new DogGroomer();

this.testGrooming();

}

public void testGrooming() {

Dog effie = new Dog();//local var

this.groomer.trimFur(effie);

}

//payGroomer() method elided

}

53/73
Andries van Dam © 2024 9/17/24

Modeling Properties with Instance Variables (1/4)

● Methods model capabilities of a
class (e.g., move, dance)

● All instances of same class have
exact same methods (capabilities)
and the same properties

● BUT: the values of those properties
can be different and can differentiate
one instance from other instances of
the same class

● We use instance variables to model
these properties and their values
(e.g., the robot’s size, position,
orientation, color, …)

54/73
Andries van Dam © 2024 9/17/24

Modeling Properties with Instance Variables (2/4)
● All instances of a class have same set of properties,

but values of these properties will differ

● E.g., CS15Students all have a height

● CS15Student class would have an instance

variable to represent their height

o all CS15Students have a height, but the value stored in

instance variable would differ from instance to instance

o for one student, the value of height is 5’2”. For another,

it’s 6’4”

● Properties can further be broken down into attributes,

components, and references to peer objects

55/73
Andries van Dam © 2024 9/17/24

Modeling Properties with Instance Variables (3/4)
● Attributes are descriptors of objects

o models “described by” relationship
▪ Humans are described by age, height, weight, etc.

o attributes typically described by primitives (i.e., int)

● Components are structural parts of composite objects
o models “composed of” relationship

▪ Humans are composed of a Head, Torso, Legs, etc.

▪ can have hierarchal relationships - Head is further composed of Eyes, Ears, etc.

o composite objects are exceedingly common

o our classes are typically composed of other classes in our program

● Peer Objects are classes that a class can send messages to
o models “knows about” relationship

▪ Humans know about Computers, Pets, Beds, etc.

56/73
Andries van Dam © 2024 9/17/24

Modeling Properties with Instance Variables (4/4)

● The distinction between components, attributes, and peer objects isn’t

syntactic – they are all stored in instance variables
o requires thinking about the purpose of these properties for modeling each class

o requires thinking through what relationship you are trying to model

● We will cover attributes and components today - peer objects next lecture!

57/73
Andries van Dam © 2024 9/17/24

Modeling Attributes with Instance Variables (1/2)

● Add instance variable to a class to

add a property

● How would we categorize the
relationship between age and the

DogGroomer class?
o the DogGroomer is “described by”

age – an attribute

● Assigned an initial value to groomer
by assigning a new DogGroomer
o whoever creates a DogGroomer

initializes its age to myAge, by

supplying an int argument in the

call on the DogGroomer constructor

public class DogGroomer {

private int age;

public DogGroomer(int myAge){

this.age = myAge;

}

// other methods elided

}

public class PetShop {

private DogGroomer groomer;

public PetShop() {

this.groomer = new DogGroomer(<age arg>);

this.testGrooming();

}

// methods elided

}

58/73
Andries van Dam © 2024 9/17/24

Modeling Attributes with Instance Variables (2/2)

public class DogGroomer {

private int age;

// other instance variable properties elided

public DogGroomer(int myAge){

this.age = myAge;

}

public void printAge(){

System.out.println(this.age);

}

// other methods elided

}

● Can use properties in any methods

inside class
o instance variables have entire class

as their scope

o printAge prints the age attribute

into the terminal using

System.out.println

● DogGroomer has other attributes

elided
o name, address, height, etc.

59/73
Andries van Dam © 2024 9/17/24

TopHat Question Join Code: 316062

Which of the following is NOT true about attributes?

A. Typically primitive types
B. Models “described by” relationship
C. Have hierarchal relationship – attributes are composed
further of their own attributes
D. Can be parameter passed through constructor to
initialize

60/73
Andries van Dam © 2024 9/17/24

Modeling Components with Instance Variables
● The PetShop class declares an

instance variable groomer
o Groomer’s age attribute is set to 24

● Initialize groomer by instantiating new
DogGroomer

● How would we categorize the
relationship between groomer and the

PetShop class?
o the PetShop is “composed of” groomer

– a component

● PetShop has other components elided
o Manager, Animals, PetFood, etc.

public class PetShop {

private DogGroomer groomer;

// other instance variable properties, like

//name, address, phone number,… elided

public PetShop() {

this.groomer = new DogGroomer(24);

this.testGrooming();

}

public void testGrooming() {

Dog effie = new Dog(); //local var

this.groomer.trimFur(effie);

this.groomer.printAge(); //prints 24

}

//payGroomer() method elided

}

61/73
Andries van Dam © 2024 9/17/24

TopHat Question Join Code: 316062

Which of the following
properties is NOT a
component of the Farm
class?

farmHouse
wilbur
bessy
betty
address

public class Farm {
private House farmHouse;
private Pig wilbur;
private Cow bessy;
private Cow betty;
private int address;

public Farm(House myFarmHouse) {
this.farmHouse = myFarmHouse;
this.wilbur = new Pig();
this.bessy = new Cow();
this.betty = new Cow();
this.address = 3;

}
}

A.

B.

C.

D.

E.

62/73
Andries van Dam © 2024 9/17/24

Encapsulation Design Pattern

• Why private instance variables?

• Encapsulation for safety… your properties are your private business

• Allows for chain of abstraction so classes don’t need to worry about
the inner workings of classes they instantiate

o we will also show you safe ways of allowing other classes to have
selective access to designated properties… stay tuned

DogOwner PetShop DogGroomer

Shampoo

HairDryer

Clippers

63/73
Andries van Dam © 2024 9/17/24

Always Remember to Initialize!

● What if you declare an instance

variable, but forget to initialize it?

● Happens if you don’t supply a

constructor

● The instance variable will assume a

“default value”

o if it’s an int, it will be 0, float 0.0, etc.

o if it’s an instance, it will be null— a

special value that means your variable

is not referencing any instance at the

moment

public class PetShop {

private DogGroomer groomer;

public PetShop() {

// oops! Forgot to initialize groomer

this.testGrooming();

}

public void testGrooming() {

Dog effie = new Dog();//local var

this.groomer.trimFur(effie);

}

}

64/73
Andries van Dam © 2024 9/17/24

NullPointerExceptions
● If a variable’s value is null and

you try to give it a command,

you’ll be rewarded with a

runtime error—you can’t call a

method on “nothing”!

● groomer’s default value is null,

so this particular error yields a

NullPointerException

● When you run into one of these

(we promise, you will), make

sure all instance variables have

been explicitly initialized,

preferably in the constructor, and
no variables are initialized as null

public class PetShop {

private DogGroomer groomer;

public PetShop() {

//oops! Forgot to initialize groomer

this.testGrooming();

}

public void testGrooming() {

Dog effie = new Dog(); //local var

this.groomer.trimFur(effie);

}

}
NullPointerException

65/73
Andries van Dam © 2024 9/17/24

public class PetShop {

private DogGroomer groomer;

public PetShop() {

this.groomer = new DogGroomer(24);

this.testGrooming();

}

public void testGrooming() {

Dog effie = new Dog(); //local var

this.groomer.shampooFur(effie);

this.groomer.trimFur(effie);

this.groomer.printAge(); //prints 24

effie = new Dog(); //var reassignment

this.groomer.shampooFur(effie);

this.groomer.trimFur(effie);

}

}

public class DogGroomer {

private int age;

public DogGroomer(int myAge){

this.age = myAge;

}

public void printAge(){

System.out.println(this.age);

}

public void trimFur(Dog shaggyDog) {

//code that trims the fur of shaggyDog

}

...

}

public class App {

public static void main(String[] args)

{

new PetShop();

}

}

Our Program

66/73
Andries van Dam © 2024 9/17/24

Summary
● delegation pattern: passing responsibility of task details to another class to maintain clean code design

o results in a chain of abstraction

● local variables: scope is limited to a method

● instance variables: store the properties of instances of a class for use by multiple methods—use them only for that

purpose

o attributes are descriptors of objects

o components are structural parts of composite objects

o peer objects are classes that a class can send messages to

● A variable that “goes out of scope” is garbage collected

o for a local variable, when the method ends

o for an instance variable, when the last reference to it is deleted

67/73
Andries van Dam © 2024 9/17/24

Announcements

• Lab 1 (Intro to Java) begins today
o Some section rooms assignments have changed, so be sure to

read email from section TAs

• AndyBot due tomorrow 9/18
o No late deadline = no credit for code submitted past the deadline
o Double check your code in gradescope and github

• Java syntax code along recording on the website, stay tuned
for more code alongs on new material
o More on the next code-along Thursday!

• Mentors will be reaching out soon regarding first meeting

68/73
Andries van Dam © 2024 9/17/24

Review: Methods

● Call methods: used on an instance of a class

samBot.turnRight();

● Define methods: give a class specific capabilities

public void turnLeft() {

// code to turn Robot left goes here

}

69/73
Andries van Dam © 2024 9/17/24

Review: Parameters and Arguments

● Define methods that take in generic parameters (input) and have return
values (output); e.g., this Calculator’s method:

public int add(int x, int y) {

return x + y; // x, y are dummy (symbolic) variables

}

● Call such methods on instances of a class by providing specific arguments
(actual values for symbolic parameters)

myCalculator.add(5, 8);

● Remember the one-to-one correspondence rule: list of arguments must
match list of parameters in number, order, and types

o thus, Java can substitute each argument for its corresponding parameters

70/73
Andries van Dam © 2024 9/17/24

Review: Classes

● Recall that classes are just blueprints

● A class gives a basic definition of an object we want to

model (one or more instances of that class)

● It tells the properties and capabilities of that object

● You can create any class you want and invent any

methods and properties you choose for it!

71/73
Andries van Dam © 2024 9/17/24

Review: Instantiation
● Instantiation means building an

instance from its class

o the capabilities of the instance

are defined through the class’s

methods

● Ex: new Robot(); creates an

instance of Robot by calling the

Robot class’ constructor (see

next slide)

The Robot
class

new Robot();

instance

72/73
Andries van Dam © 2024 9/17/24

Review: Constructors (1/2)

● A constructor is a

method that is called to

create a new instance

● Let’s define one for the

Dog class

● Let’s also add methods

for actions all Dogs know

how to do like bark, eat,

and wag their tails

public class Dog {

public Dog() {

// this is the constructor!

}

public void bark(int numTimes) {

// code for barking goes here

}

public void eat() {

// code for eating goes here

}

public void wagTail() {

// code for wagging tail goes here

}

}

73/73
Andries van Dam © 2024 9/17/24

Review: Constructors (2/2)

● Note constructors do not

specify a return type

● Name of constructor

must exactly match

name of class

● Now we can instantiate

a Dog in some method

using the new keyword:

new Dog();

public class Dog {

public Dog() {

// this is the constructor!

}

public void bark(int numTimes) {

// code for barking goes here

}

public void eat() {

// code for eating goes here

}

public void wagTail() {

// code for wagging tail goes here

}

}

Topics in Socially Responsible Computing

Antitrust & Big Tech

Image: Shutterstock

Antitrust = against monopolies

vs.

Images: Getty

Antitrust = against monopolies

vs.

Sherman Antitrust Act (1890):
Banned any business practice

that set out to restrict
competition and create a

monopoly

Source: FTC

Antitrust = against monopolies

vs.

Federal Trade Commission
Act (1914):

Banned deceptive business
practices and created the

FTC

Clayton Antitrust Act (1914):
Banned mergers and other

actions not covered by
Sherman

Source: FTC

Big Tech’s Power: Modern Monopolies?

➔Google, Amazon, Meta, and Apple took in about 60% of digital
ad earnings in 2022

➔Amazon takes in about 40% of online spending in the US

➔Google’s search engine conducts >90% of web searches

➔Microsoft is a top-three vendor to 84% of businesses

Source: Statista (2024), Forbes (2024),

NY Times (2024), Harvard Business Review (2022)

Then…

Source: Reuters (2019), NYT (2001)

2001

1984

Source: Reuters (2024), NYT (2024)

Now!

How to identify a monopoly: two red flags!

Negative effects on consumers

Barriers to entry for potential competitors

FTC Chair
Lina Khan

Yale Law Journal (2017)

Amazon’s Monopolizing Playbook,
according to Lina Khan:
❏Merchants cannot list products on any other

site for less than they sell on Amazon
❏Hikes fees for merchants to sell on Amazon

❏Merchants cannot raise prices on other sites
to account for fees
❏End up selling on Amazon exclusively so they

can raise prices
❏Results in higher prices across the economy-

not just on Amazon Source: NPR (2023)

How to identify a monopoly: two red flags!

Negative effects on consumers

Barriers to entry for potential competitors

In the event of a complete TikTok ban,
Meta stands to gain up to 60% of
TikTok’s American ad revenue.

Source: Fortune (2022), NYT (2024)

U.S. et al. vs. Google
Justice Department:
➔Google’s deals with Apple and other

browsers to be the default search
engine restrict competition

➔Spent $26.3 billion in 2021 alone to
create the “Google Web”

Google:
➔People use Google because Google is

the best option
➔It is quite simply the best experience,

which is why companies like Apple
continue to renew contractsSource: NYT (May 2024)

August 5th, 2024:
Federal Judge finds

Google guilty of
violating antitrust

laws

	Slide 1: Get to know your class!
	Slide 2: Lecture 4
	Slide 3: Review Slides at End of Deck ☺
	Slide 4: Outline
	Slide 5: Variables
	Slide 6: Syntax: Variable Declaration and Assignment
	Slide 7: Assignment vs. Equality
	Slide 8
	Slide 9: TopHat Question Join Code: 316062
	Slide 10: Example: Instantiation (1/2)
	Slide 11: Another Example: Instantiation (2/2)
	Slide 12: Outline
	Slide 13: Instances as Parameters (1/3)
	Slide 14: Instances as Parameters (2/3)
	Slide 15
	Slide 16: What is Memory?
	Slide 17: Instances as Parameters: Under the Hood (1/6)
	Slide 18: Instances as Parameters: Under the Hood (2/6)
	Slide 19: Instances as Parameters: Under the Hood (3/6)
	Slide 20: Instances as Parameters: Under the Hood (4/6)
	Slide 21: Instances as Parameters: Under the Hood (5/6)
	Slide 22: Instances as Parameters: Under the Hood (6/6)
	Slide 23: Outline
	Slide 24: Variable Reassignment (1/3)
	Slide 25: Variable Reassignment (2/3)
	Slide 26: Variable Reassignment (3/3)
	Slide 27: Variable Reassignment: Under the Hood (1/5)
	Slide 28: Variable Reassignment: Under the Hood (2/5)
	Slide 29: Variable Reassignment: Under the Hood (3/5)
	Slide 30: Variable Reassignment: Under the Hood (4/5)
	Slide 31: Variable Reassignment: Under the Hood (5/5)
	Slide 32: Outline
	Slide 33: Adding PetShop Capabilities
	Slide 34: Delegation Pattern (1/4)
	Slide 35: Delegation Pattern (2/4)
	Slide 36: Delegation Pattern (3/4)
	Slide 37: Delegation Pattern (4/4)
	Slide 38: Delegating to Top-Level Class (1/2)
	Slide 39: Delegating to Top-Level Class (2/2)
	Slide 40: TopHat Question Join Code: 316062
	Slide 41: Design Patterns and Principles
	Slide 42: Outline
	Slide 43: Local Variables (1/2)
	Slide 44: Local Variables (2/2)
	Slide 45: Garbage Collection
	Slide 46: Accessing Local Variables
	Slide 47: Introducing… Instance Variables!
	Slide 48: What’s an Instance Variable?
	Slide 49: Instance Variables (1/4)
	Slide 50: Instance Variables (2/4)
	Slide 51: Instance Variables (3/4)
	Slide 52: Instance Variables (4/4)
	Slide 53: Modeling Properties with Instance Variables (1/4)
	Slide 54: Modeling Properties with Instance Variables (2/4)
	Slide 55: Modeling Properties with Instance Variables (3/4)
	Slide 56: Modeling Properties with Instance Variables (4/4)
	Slide 57: Modeling Attributes with Instance Variables (1/2)
	Slide 58: Modeling Attributes with Instance Variables (2/2)
	Slide 59: TopHat Question Join Code: 316062
	Slide 60: Modeling Components with Instance Variables
	Slide 61: TopHat Question Join Code: 316062
	Slide 62: Encapsulation Design Pattern
	Slide 63: Always Remember to Initialize!
	Slide 64: NullPointerExceptions
	Slide 65
	Slide 66: Summary
	Slide 67: Announcements
	Slide 68: Review: Methods
	Slide 69: Review: Parameters and Arguments
	Slide 70: Review: Classes
	Slide 71: Review: Instantiation
	Slide 72: Review: Constructors (1/2)
	Slide 73: Review: Constructors (2/2)
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83: Amazon’s Monopolizing Playbook, according to Lina Khan:
	Slide 84
	Slide 85
	Slide 86

