
1 / 75
Andries van Dam © 2024 09/10/24

Lecture 2
Calling and Defining Methods in Java

2 / 75
Andries van Dam © 2024 09/10/24

3 / 75
Andries van Dam © 2024 09/10/24

Visit our website here
for office hours and
more information!

https://cs.brown.edu/people/orgs/wics/

4 / 75
Andries van Dam © 2024 09/10/24

Note Taking for CS15

• Slides are always uploaded to the

website before lectures!

• Physical copies

o print out the “Printable PDF” version of

the slides before lecture and take

notes while I’m speaking!

o if you’re on campus, you can find

instructions on how to Live note-

taking print here!

o If you download the PowerPoint

version of slides, you can take notes in

the lower part of the screen

Lucy Reyes’ notes from CS15!

(HTA in 2019)

https://ithelp.brown.edu/kb/articles/get-started-with-myprint

5 / 75
Andries van Dam © 2024 09/10/24

Outline

• Calling methods

• Declaring and defining a class

• Instances of a class

• Defining methods

• The this keyword

6 / 75
Andries van Dam © 2024 09/10/24

What’s a Program? (1/4)

● Model of complex system

o model: simplified

representation of important

features of something, either

tangible or abstract

o system: collection of

collaborating components

7 / 75
Andries van Dam © 2024 09/10/24

● Sequences of instructions expressed in a specific

programming language

o syntax: grammatical rules for writing instructions

o semantics: meaning/interpretation of instruction

What’s a Program? (2/4)

8 / 75
Andries van Dam © 2024 09/10/24

What’s a Program? (3/4)

● Instructions written (programmed/coded) by programmer (or
GAI)
o coded in a specific programming language

o programming languages allow you to express yourself precisely unlike natural (human)

language that thrives on “shading”, nuance, ambiguity, implicit context…

o algorithms are 100% literal, cannot have ambiguities

● Real world examples

o Banner, email, video games, smartphone and its apps; embedded computers in

appliances and vehicles, ATMs…A Tesla is a display-driven computer on wheels

● Executed by computer by carrying out individual instructions

9 / 75
Andries van Dam © 2024 09/10/24

What’s a Program? (4/4)

● We write in Java, a “high-level” language

● Our program is compiled by the Java compiler into ”low-level” instruction
the computer can actually understand

● The computer then executes this compiled code and responds

Java Code
Java Compiler

Machine Code
Computer Execution Computer

Response

10 / 75
Andries van Dam © 2024 09/10/24

• Models the “application world” as system of collaborating

objects

• In OOP, objects are ”smart” in their specialty

o have properties and behaviors (things they know how to do)

• Objects collaborate by sending each other messages

• Objects typically composed of other component objects

Object Oriented Programming

11 / 75
Andries van Dam © 2024 09/10/24

OOP as Modeling

● Write programs by modeling the problem as system
of collaborating components
o you determine what the building blocks are

o put them together so they cooperate properly

o like building with smart Legos,
some of which are pre-defined, some of
which you design!

o class diagrams, like the one
shown here, are a great way
to help model your program!

12 / 75
Andries van Dam © 2024 09/10/24

Java Programs

● CS15 uses Java

o Java was developed by Sun Microsystems (absorbed by Oracle)

▪ the Sunlab was named for the desktop computers that it held for over a decade

o it is meant to run on many “platforms” without change, from desktop to cell

phones

o platform independence

o but Java isn’t sufficient by itself: many layers of software in a modern

computer

13 / 75
Andries van Dam © 2024 09/10/24

Outline

• Calling methods

• Declaring and defining a class

• Instances of a class

• Defining methods

• The this keyword

14 / 75
Andries van Dam © 2024 09/10/24

• samBot is a robot who lives in a

2D grid world

• She knows how to do two things:

o move forward any number of steps

o turn right 90o

• We will learn how to communicate

with samBot using Java

Meet samBot (kudos to former HTA Sam Squires)

I created

samBot!

Blue text = Java code!

15 / 75
Andries van Dam © 2024 09/10/24

samBot’s World

• This is samBot’s world

• samBot starts in the

square at (0,0)

• She wants to get to the

square at (1,1)

• Thick black lines are

walls samBot can’t pass

through

0 1 2 3 4

0

1

2

(2,4)

16 / 75
Andries van Dam © 2024 09/10/24

Giving Instructions (1/3)

• Goal: move samBot from starting

position to destination by giving her

a list of instructions

• samBot only knows how to “move

forward n steps” and “turn right”

• What instructions should be given?

20 1 3 4

0

1

2

17 / 75
Andries van Dam © 2024 09/10/24

20 1 3 4

0

1

2

Giving Instructions (2/3)

• “Move forward 4 steps”

• “Turn right”

• “Move forward 1 step”

• “Turn right”

• “Move forward 3 steps”

Note: samBot moves in the direction her outstretched arm is pointing.

Yes, she can move sideways and upside down in this 2D world!

18 / 75
Andries van Dam © 2024 09/10/24

20 1 3 4

0

1

2

Giving Instructions (3/3)

• Instructions must be given in a
language samBot knows

• That’s where Java comes in!

• In Java, give instructions to an

object by giving it commands

o we use “sending a message” and “giving a

command” as synonyms!

19 / 75
Andries van Dam © 2024 09/10/24

“Calling Methods”: Giving Commands in Java (1/2)

• samBot can only handle commands she knows how to

respond to

• These responses are called methods!

o “method” is short for “method for responding to a command.”
Therefore, whenever samBot gets a command, she must respond by

utilizing a predefined method

• Objects cooperate by giving each other commands

o caller is the object giving the command

o receiver is the object receiving the command

Red text = important vocabulary!

20 / 75
Andries van Dam © 2024 09/10/24

• samBot already has one method for “move forward n steps” and

another method for “turn right”

• When we send a command to samBot to “move forward” or “turn

right” in Java, we are calling a method on samBot

“Calling Methods”: Giving Commands in Java (2/2)

Hey samBot, turn

right!

caller receiver

(samBot)

method call (command

passed from caller to receiver)

21 / 75
Andries van Dam © 2024 09/10/24

Turning samBot right

• samBot’s “turn right” method is called turnRight

• To call methods on samBot in Java, you need to address her by

name!

• To call turnRight method on samBot:

samBot.turnRight();

• Every command to samBot takes the form:

samBot.<method name(…)>;

• What are those parentheses at the end of the method for?

You can substitute any

method inside < >!

; ends Java statement

Method names don’t have spaces!

In CS15, we use a capitalization
style called camelCase

22 / 75
Andries van Dam © 2024 09/10/24

Moving samBot forward

• Remember: when telling samBot to move forward, you need to tell

her how many steps to move

• samBot’s “move forward” method is named moveForward

• To call this method in Java:

samBot.moveForward(<number of steps>);

• This means that if we want her to move forward 2 steps, we say:

samBot.moveForward(2);

23 / 75
Andries van Dam © 2024 09/10/24

Calling Methods: Important Points

• Method calls in Java have parentheses after method’s name

• In definition (body) of method, extra pieces of information to be taken

in by the method are called parameters; in the call to the method,

the actual values taken in are called arguments

o e.g., in defining f(x), x is the parameter; in calling f(2), 2 is the argument

o more on parameters and arguments next lecture!

• If method needs any information, include it between parentheses

(e.g., samBot.moveForward(2);)

• If no extra information is needed, leave parentheses empty (e.g.,

samBot.turnRight();)

24 / 75
Andries van Dam © 2024 09/10/24

Guiding samBot in Java

• Tell samBot to move forward 4 steps

• Tell samBot to turn right

• Tell samBot to move forward 1 step

• Tell samBot to turn right

• Tell samBot to move forward 3 steps

0 1 2 3 4

0

1

2

“pseudocode” Java code

→ samBot.moveForward(4);

→ samBot.turnRight();

→ samBot.moveForward(1);

→ samBot.turnRight();

→ samBot.moveForward(3);

An informal notation of

English, math, and
Java-like commands

25 / 75
Andries van Dam © 2024 09/10/24

• Simulating lines of code by hand checks that each line

produces correct action

• In hand simulation, you play the role of the computer
o lines of code are “instructions” for the computer

o try to follow “instructions” and see if you get desired result

o if result is incorrect, one or more instructions or the order of instructions

may be incorrect

Hand Simulation

26 / 75
Andries van Dam © 2024 09/10/24

20 1 3 4

0

1

2

samBot.moveForward(4);

samBot.turnRight();

samBot.moveForward(1);

samBot.turnRight();

samBot.moveForward(3);

Hand Simulation of This Code

27 / 75
Andries van Dam © 2024 09/10/24

• To make lectures less passive and improve engagement

• To gauge how well you are following a lecture, stop lecture

and let you answer simple questions through TopHat

o sign up here if you haven’t done so already

• Questions will be released when a “TopHat Question” slide
comes up

• Approximately 1-minute window to answer the question

• We will collect results real-time and discuss the answers

during lecture

• 8% of total grade (with PLQs) – good reason to attend!

• Drop lowest 4 scores

TopHat Question Logistics Join Code: 316062

https://success.tophat.com/s/article/Brown-University-SSO

28 / 75
Andries van Dam © 2024 09/10/24

TopHat Question
Where will samBot end up when this code is

executed?

samBot.moveForward(3);

samBot.turnRight();

samBot.turnRight();

samBot.moveForward(1);

A B

C

D
Choose one of the positions or

E: None of the above

Join Code: 316062

29 / 75
Andries van Dam © 2024 09/10/24

Hand Simulation
Where will samBot end up when this code is

executed?

samBot.moveForward(3);

samBot.turnRight();

samBot.turnRight();

samBot.moveForward(1);

A B

C

D
Choose one of the positions or

E: None of the above

30 / 75
Andries van Dam © 2024 09/10/24

public class RobotMover {

/* additional stencil code elided*/

public void moveRobot(Robot myRobot) {

myRobot.moveForward(4);

myRobot.turnRight();

myRobot.moveForward(1);

myRobot.turnRight();

myRobot.moveForward(3);

}

}

• Let’s demonstrate this code for real

• First, put it inside real Java program

• Grayed-out code specifies context in
which an arbitrary robot named

myRobot, a parameter of the
moveRobot method, executes

instructions

o part of stencil code written for you

by the TAs, which also includes

any robot’s capability to respond to
moveForward and turnRight−
more on this later

Putting Code Fragments in a Real Program (1/2)

31 / 75
Andries van Dam © 2024 09/10/24

• Before, we’ve talked about

objects that handle

messages with "methods"

• Introducing a new concept…

classes!

public class RobotMover {

/* additional code elided */

public void moveRobot(Robot myRobot) {

myRobot.moveForward(4);

myRobot.turnRight();

myRobot.moveForward(1);

myRobot.turnRight();

myRobot.moveForward(3);

}

}

We’re about to explain this

part of the code!

Putting Code Fragments in a Real Program (2/2)

32 / 75
Andries van Dam © 2024 09/10/24

Outline

• Calling methods

• Declaring and defining a class

• Instances of a class

• Defining methods

• The this keyword

33 / 75
Andries van Dam © 2024 09/10/24

What is a class?

• A class is a blueprint for a

corresponding type of object

• An object’s class defines its

properties and capabilities

(methods)

o more on this in a few slides!

• Let’s embed the moveRobot code

fragment (method) that moves
samBot (or any other Robot) in a

new class called RobotMover

• Need to tell Java compiler about

RobotMover before we can use it

public class RobotMover {

/* additional code elided */

public void moveRobot(Robot myRobot) {

myRobot.moveForward(4);

myRobot.turnRight();

myRobot.moveForward(1);

myRobot.turnRight();

myRobot.moveForward(3);

}

}

34 / 75
Andries van Dam © 2024 09/10/24

Declaring and Defining a Class (1/3)
• Like a dictionary entry, first declare

term, then provide definition

• First line declares RobotMover class

• Breaking it down:

o public indicates any other object

can use instances of this class

o class indicates to Java compiler

that we are about to define a new

class

o RobotMover is name chosen for our

class

public class RobotMover {

/* additional code elided */

public void moveRobot(Robot myRobot) {

myRobot.moveForward(4);

myRobot.turnRight();

myRobot.moveForward(1);

myRobot.turnRight();

myRobot.moveForward(3);

}

}

Note: public and class are Java “reserved words” aka “keywords” and have

pre-defined meanings in Java; use Java keywords a lot

declaration of the RobotMover class

35 / 75
Andries van Dam © 2024 09/10/24

public class RobotMover {

/* additional code elided */

public void moveRobot(Robot myRobot) {

myRobot.moveForward(4);

myRobot.turnRight();

myRobot.moveForward(1);

myRobot.turnRight();

myRobot.moveForward(3);

}

}

• Class definition (aka “body”) defines

properties and capabilities of class

o contained within curly braces that

follow the class declaration

• A class’s capabilities (“what it knows

how to do”) are defined by its methods

– RobotMover thus far only shows one

specific method, moveRobot

o each method has a declaration

followed by its definition (also

enclosed in {…} braces)

• A class’s properties are defined by its

instance variables – more next week
definition of RobotMover class

definition of moveRobot method

declaration of
moveRobot method

Declaring and Defining a Class (2/3)

36 / 75
Andries van Dam © 2024 09/10/24

• General form for a class:

declaration

• To make code more compact, typically put opening brace on same line as

declaration - Java compiler doesn’t care

• Each class goes in its own file, where name of file must match name of class

o RobotMover class is contained in file “RobotMover.java”

<visibility> class <Name> {

<code (properties and
capabilities) that defines class>

}

definition

public class RobotMover {

/* additional code elided */

public void moveRobot(Robot myRobot) {

/* method body */

}

}

Declaring and Defining a Class (3/3)

37 / 75
Andries van Dam © 2024 09/10/24

The Robot class (defined by the TAs)

• public class Robot declares

a class called Robot

• Information about the properties
and capabilities of Robots (the

class definition) goes within the

red curly braces

Note: Normally, support code is a “black box” that you can’t examine

in-line comment

public class Robot {

public void turnRight() {

// code that turns robot right

}

public void moveForward(int numberOfSteps) {

// code that moves robot forward

}

/* other code elided-- if you’re curious,

check out Robot.java in the stencil code!*/

}

38 / 75
Andries van Dam © 2024 09/10/24

Methods of the TA's Robot class

• public void turnRight() and
public void moveForward(int
numberOfSteps) each declare a

method

o more on void later!

• moveForward needs to know how

many steps to move, so the
parameter is int numberOfSteps
within parentheses

o int tells compiler this parameter

is an “integer” (“moveForward
takes a single parameter called
numberOfSteps of type int”)

public class Robot {

public void turnRight() {

// code that turns robot right

}

public void moveForward(int numberOfSteps) {

// code that moves robot forward

}

/* other code elided-- if you’re curious, check

out Robot.java in the stencil code!*/

}

Note that when we call moveForward, we
have to pass an argument of type int or

the Java compiler will throw an error

39 / 75
Andries van Dam © 2024 09/10/24

Outline

• Calling methods

• Declaring and defining a class

• Instances of a class

• Defining methods

• The this keyword

40 / 75
Andries van Dam © 2024 09/10/24

Classes and Instances (1/4)
• samBot is an instance of class Robot

o this means samBot is a particular Robot that was built using

the Robot class as a blueprint (another instance could be

chloeBot)

• All Robots (all instances of the class Robot) are

restricted to the exact same capabilities: the methods

defined in the Robot class. What one Robot instance

can do, all instances can do since they are made with

the same blueprint!

• All Robots also have the exact same properties (i.e.,

every Robot has a color and a size)

o they all have these properties (e.g. size), but values of

these properties may differ between instances (e.g., a big

samBot and small chloeBot)

41 / 75
Andries van Dam © 2024 09/10/24

The Robot class is

like a blueprint

Classes and Instances (2/4)

https://www.youtube.com/watch?v=zMW98Oaa5_U

42 / 75
Andries van Dam © 2024 09/10/24

• Can use the Robot class to build actual Robots - instances of the

class Robot, whose properties (like their color in this case) may vary

(next lecture)

Classes and Instances (3/4)

samBot blueBot pinkBot greenBot

43 / 75
Andries van Dam © 2024 09/10/24

instance instance instance instance

Classes and Instances (4/4)

• Method calls are done on instances of the class. These are four instances

of the same class (blueprint)

samBot blueBot pinkBot greenBot

44 / 75
Andries van Dam © 2024 09/10/24

TopHat Question
You know that blueBot and pinkBot are instances of the

same class. Let’s say that the call pinkBot.chaChaSlide();
makes pinkBot do the cha-cha slide. Which of the following is

true?

A. The call blueBot.chaChaSlide(); might make blueBot
do the cha-cha slide or another popular line dance instead

B. The call blueBot.chaChaSlide(); will make blueBot do

the cha-cha slide

C. You have no guarantee that blueBot has the method

chaChaSlide();

Join Code: 316062

45 / 75
Andries van Dam © 2024 09/10/24

Outline

• Calling methods

• Declaring and defining a class

• Instances of a class

• Defining methods

• The this keyword

46 / 75
Andries van Dam © 2024 09/10/24

Defining Methods

• We have already learned about

defining classes, let’s now talk

about defining methods

• Let’s use a variation of our previous

example

0 1 2 3 4

0

1

2

public class RobotMover {

/* additional code elided */

public void moveRobot(Robot myRobot) {

// Your code goes here!

// …

// …

}

}

47 / 75
Andries van Dam © 2024 09/10/24

Declaring vs. Defining Methods

• Declaring a method means the class knows how to do

a new task, e.g., any instance of class Robot can

chaChaSlide()

• Defining a method actually explains how all instances
of the class execute this task (i.e., what sequence of

commands it specifies)

o chaChaSlide() could include stepping backwards, alternating feet,

stepping forward

• For now, you will need to both declare and define your

methods

48 / 75
Andries van Dam © 2024 09/10/24

A Variation on moveRobot (1/2)

0 1 2 3 4

0

1

2

public class RobotMover {

/* additional code elided */

public void newMoveRobot(Robot myRobot) {

myRobot.turnRight();

myRobot.moveForward(2);

myRobot.turnRight();

myRobot.turnRight();

myRobot.turnRight();

myRobot.moveForward(3);

myRobot.turnRight();

myRobot.turnRight();

myRobot.turnRight();

myRobot.moveForward(2);

myRobot.turnRight();

myRobot.turnRight();

myRobot.turnRight();

myRobot.moveForward(2);

}

}

49 / 75
Andries van Dam © 2024 09/10/24

public class RobotMover {

/* additional code elided */

public void newMoveRobot(Robot myRobot) {

myRobot.turnRight();

myRobot.moveForward(2);

myRobot.turnRight();

myRobot.turnRight();

myRobot.turnRight();

myRobot.moveForward(3);

myRobot.turnRight();

myRobot.turnRight();

myRobot.turnRight();

myRobot.moveForward(2);

myRobot.turnRight();

myRobot.turnRight();

myRobot.turnRight();

myRobot.moveForward(2);

}

}

• Lots of code for a simple problem

• Any Robot instance like samBot only

knows how to turn right, so must call

turnRight three times to make her

turn left

• If she understood how to “turn left,”

would be much less code!

• We can modify samBot to turn left by

declaring and defining a new
method in Robot called turnLeft

A Variation on moveRobot (2/2)

“turn left”

“turn left”

“turn left”

50 / 75
Andries van Dam © 2024 09/10/24

Defining a Method (1/2)

• Almost all methods take on

this general form:

• When calling turnRight or

moveForward on an instance

of the Robot class, all code

between method’s curly

braces is executed

<visibility> <type> <name> (<parameters>) {
<list of statements within method>

}

explanation in later lecture

public class Robot {

public void turnRight() {

// code that turns robot right

}

public void moveForward(int numberOfSteps) {

// code that moves robot forward

}

}

51 / 75
Andries van Dam © 2024 09/10/24

Defining a Method (2/2)

• We’re going to define a new
method: turnLeft

• To make a Robot turn left,

tell it to turn right three times

public class Robot {

public void turnRight() {

// code that turns robot right

}

public void moveForward(int numberOfSteps) {

// code that moves robot forward

}

public void turnLeft() {

this.turnRight();

this.turnRight();

this.turnRight();

}

}

52 / 75
Andries van Dam © 2024 09/10/24

Outline

• Calling methods

• Declaring and defining a class

• Instances of a class

• Defining methods

• The this keyword

53 / 75
Andries van Dam © 2024 09/10/24

• When working with the class

RobotMover, we were talking to
samBot, an instance of class Robot

• To tell her to turn right, we said
“samBot.turnRight();”

• Why do the TAs now write

“this.turnRight();”?

• Recall the syntax for calling methods:

<instance>.<method>();

public class Robot {

public void turnRight() {

// code that turns robot right

}

public void moveForward(int numberOfSteps) {

// code that moves robot forward

}

public void turnLeft() {

this.turnRight();

this.turnRight();

this.turnRight();

}

}

The this keyword (1/3)

54 / 75
Andries van Dam © 2024 09/10/24

The this keyword (2/3)

• The this keyword allows an

instance (like samBot) to call one

of its own methods on itself

• this is short for “this same

instance” or “defined in this

method”

• Use this to call an existing
method of Robot class

(turnRight()) within a new

method of Robot class

(turnLeft())

public class Robot {

public void turnRight() {

// code that turns robot right

}

public void moveForward(int numberOfSteps) {

// code that moves robot forward

}

public void turnLeft() {

this.turnRight();

this.turnRight();

this.turnRight();

}

}

55 / 75
Andries van Dam © 2024 09/10/24

The this keyword (3/3)

• When samBot is told by, say, a

RobotMover instance to

turnLeft, she responds by

telling herself to turnRight three

times

• this.turnRight(); means “hey

me, turn right!”

• this is not required for code to

work, but it is good style and

CS15 expects it

public class Robot {

public void turnRight() {

// code that turns robot right

}

public void moveForward(int numberOfSteps) {

// code that moves robot forward

}

public void turnLeft() {

this.turnRight();

this.turnRight();

this.turnRight();

}

}

56 / 75
Andries van Dam © 2024 09/10/24

We’re done!

• Now that Robot class has

turnLeft(), we can call

turnLeft() on any

instance of Robot

• We’ll see how we can use
turnLeft() to simplify our

code in a few slides

public class Robot {

public void turnRight() {

// code that turns robot right

}

public void moveForward(int numberOfSteps) {

// code that moves robot forward

}

public void turnLeft() {

this.turnRight();

this.turnRight();

this.turnRight();

}

}

57 / 75
Andries van Dam © 2024 09/10/24

TopHat Question
Given the turnLeft method, what can

we say about this.turnRight();?

A. Other objects cannot call the turnRight()
method on instances of the Robot class

B. The current instance of the Robot class is calling

turnRight() on another instance of Robot

C. The current instance of the Robot class is calling

the turnRight() method on itself

D. The call this.turnRight(); will not appear

anywhere else in the Robot’s class definition

public class Robot {

/* additional code elided */

public void turnLeft() {

this.turnRight();

this.turnRight();

this.turnRight();

}

}

Join Code: 316062

58 / 75
Andries van Dam © 2024 09/10/24

Summary
Class

declaration

Class

definition
Method

declaration

public class Robot {

public void turnRight() {

// code that turns robot right

}

public void moveForward(int numberOfSteps) {

// code that moves robot forward

}

public void turnLeft() {

this.turnRight();

this.turnRight();

this.turnRight();

}

}

Method definition

59 / 75
Andries van Dam © 2024 09/10/24

Simplifying our code using turnLeft
public class RobotMover {

public void newMoveRobot(Robot myRobot) {

myRobot.turnRight();

myRobot.moveForward(2);

myRobot.turnRight();

myRobot.turnRight();

myRobot.turnRight();

myRobot.moveForward(3);

myRobot.turnRight();

myRobot.turnRight();

myRobot.turnRight();

myRobot.moveForward(2);

myRobot.turnRight();

myRobot.turnRight();

myRobot.turnRight();

myRobot.moveForward(2);

}

}

public class RobotMover {

public void newMoveRobot(Robot myRobot) {

myRobot.turnRight();

myRobot.moveForward(2);

myRobot.turnLeft();

myRobot.moveForward(3);

myRobot.turnLeft();

myRobot.moveForward(2);

myRobot.turnLeft();

myRobot.moveForward(2);

}

}

We’ve saved a lot of lines of

code by using turnLeft!

This is good! More lines of code make your

program harder to read, debug, and
maintain

60 / 75
Andries van Dam © 2024 09/10/24

public class Robot {

public void turnRight() {

// code that turns robot right

}

public void moveForward(int numberOfSteps) {

// code that moves robot forward

}

public void turnLeft() {

this.turnRight();

this.turnRight();

this.turnRight();

}

// your code goes here!

// …

// …

// …

}

turnAround (1/3)

• The TAs could also define a
method that turns the Robot
around 180o

• See if you can declare and

define the method
turnAround

61 / 75
Andries van Dam © 2024 09/10/24

public class Robot {

public void turnRight() {

// code that turns robot right

}

public void moveForward(int numberOfSteps) {

// code that moves robot forward

}

public void turnLeft() {

this.turnRight();

this.turnRight();

this.turnRight();

}

public void turnAround() {

this.turnRight();

this.turnRight();

}

}

turnAround (2/3)

• Now that the Robot class has

the method turnAround, we

can call the method on any
instance of the class Robot

• There are other ways of

implementing this method

that can work as well

62 / 75
Andries van Dam © 2024 09/10/24

turnAround (3/3)

• Instead of calling turnRight,

could call our newly created
method, turnLeft

• Both solutions will lead to the

same end goal, in that they will

turn the robot around 180o

• How do they differ? When we try

each of these implementations
with samBot, what will we see in

each case? Is one way better

than the other?

public class Robot {

public void turnRight() {

// code that turns robot right

}

public void moveForward(int numberOfSteps) {

// code that moves robot forward

}

public void turnLeft() {

this.turnRight();

this.turnRight();

this.turnRight();

}

public void turnAround() {

this.turnLeft();

this.turnLeft();

}

}

63 / 75
Andries van Dam © 2024 09/10/24

Summary (1/2)

• Classes

o a class is a blueprint for a certain type of object

▪ example: Robot is a class

• Instances

o an instance of a class is a particular member of that

class whose methods we can call

▪ example: samBot is an instance of Robot

64 / 75
Andries van Dam © 2024 09/10/24

Summary (2/2)
• Calling methods

o an instance can call on the methods defined by its class

o general form: instance.<method name>(<parameters>);

▪ example: samBot.turnRight();

• Declaring and defining methods

o how we describe a capability of a class

o general form: <visibility> <type> <name> (<parameters>) { … }

▪ example: public void turnLeft() { … }

▪ declaration is the “header” (shown above), definition inside the curly braces

• The this keyword

o how an instance calls a method on itself within its class definition

▪ example: this.turnRight();

65 / 75
Andries van Dam © 2024 09/10/24

Announcements
• Lab 0 Linux and Terminal out today

o If you did not sign up for section or have not received an email

about your section, please email the HTAs

o Review GitHub/IntelliJ setup before lab!

• Rattytouille out tomorrow!

o Due Saturday 09/14

o No Early or Late Hand-in

• RISD students: please email the HTAs after class so we can make

sure we have your emails

• Newly registered RISD students come up to speak with Andy after

class

66 / 75
Andries van Dam © 2024 09/10/24

Intro to SRC!!!!!!
CS15 Fall 2024

67 / 75
Andries van Dam © 2024 09/10/24

Meet your STAs!

Year: Sophomore
CS + Comp Neuro

A.J. Shulman Lily Young

Year: Sophomore
English + CS

Sarah Roberts

Year: *super* Senior
CS + Religious Studies

68 / 75
Andries van Dam © 2024 09/10/24

SRC @ Brown (by the numbers)

2019
Year SRC program was founded

18
F ‘24 CS Courses Implement

SRC

4
F ‘24 SRC-focused courses

CSCI 1805 -- Computers, Freedom and
Privacy
CSCI 1860 – Cybersecurity Law and Policy
CSCI 1870 – Cybersecurity Ethics
CSCI 1953A - Accessible and Inclusive
Cybersecurity and Privacy

69 / 75
Andries van Dam © 2024 09/10/24

Source: NYT, BBC

70 / 75
Andries van Dam © 2024 09/10/24

71 / 75
Andries van Dam © 2024 09/10/24

Your CS Education

Runtime Analysis

Systems

Algorithms

Programming Languages

SRC!Artificial Intelligence

72 / 75
Andries van Dam © 2024 09/10/24

Our Philosophy:

We are NOT…

➔passing judgements on different types of technologies or their uses
➔ telling you what to think
➔presenting a single “right” path forward for ethical tech

We ARE…

➔ thinking about the social implications of technology
➔starting the conversation
➔empowering you to come to your own conclusions
➔showing possible solutions and existing efforts to address issues

73 / 75
Andries van Dam © 2024 09/10/24

SRC in CS15

➔Mini-lectures

➔Activities in Labs & Sections

➔Extra credit discussions

➔Assignments

Image source: Nickelodeon

74 / 75
Andries van Dam © 2024 09/10/24

Big Tech

Artificial
Intelligence

Blockchain
& Crypto

Surveillance &
Cybersecurity

The
Environment

Social
Media

Accessibility

Good Tech

Future of Work
& Education

Coming soon to a CS15 lecture near you…

75 / 75
Andries van Dam © 2024 09/10/24

You may be asking…

Why do I need to be
thinking about this in my

introductory CS class? I don’t even want to
work in tech. Why

should I care?

What if I’m only interested
in the technical side of CS?

Can’t I just program?

	Slide 1: Lecture 2
	Slide 2
	Slide 3
	Slide 4: Note Taking for CS15
	Slide 5: Outline
	Slide 6: What’s a Program? (1/4)
	Slide 7: What’s a Program? (2/4)
	Slide 8: What’s a Program? (3/4)
	Slide 9: What’s a Program? (4/4)
	Slide 10: Object Oriented Programming
	Slide 11: OOP as Modeling
	Slide 12: Java Programs
	Slide 13: Outline
	Slide 14: Meet samBot
	Slide 15: samBot’s World
	Slide 16: Giving Instructions (1/3)
	Slide 17: Giving Instructions (2/3)
	Slide 18: Giving Instructions (3/3)
	Slide 19: “Calling Methods”: Giving Commands in Java (1/2)
	Slide 20: “Calling Methods”: Giving Commands in Java (2/2)
	Slide 21: Turning samBot right
	Slide 22: Moving samBot forward
	Slide 23: Calling Methods: Important Points
	Slide 24: Guiding samBot in Java
	Slide 25: Hand Simulation
	Slide 26
	Slide 27: TopHat Question Logistics
	Slide 28: TopHat Question
	Slide 29: Hand Simulation
	Slide 30: Putting Code Fragments in a Real Program (1/2)
	Slide 31: Putting Code Fragments in a Real Program (2/2)
	Slide 32: Outline
	Slide 33: What is a class?
	Slide 34: Declaring and Defining a Class (1/3)
	Slide 35: Declaring and Defining a Class (2/3)
	Slide 36: Declaring and Defining a Class (3/3)
	Slide 37: The Robot class (defined by the TAs)
	Slide 38: Methods of the TA's Robot class
	Slide 39: Outline
	Slide 40: Classes and Instances (1/4)
	Slide 41: Classes and Instances (2/4)
	Slide 42: Classes and Instances (3/4)
	Slide 43: Classes and Instances (4/4)
	Slide 44: TopHat Question
	Slide 45: Outline
	Slide 46: Defining Methods
	Slide 47: Declaring vs. Defining Methods
	Slide 48: A Variation on moveRobot (1/2)
	Slide 49
	Slide 50: Defining a Method (1/2)
	Slide 51: Defining a Method (2/2)
	Slide 52: Outline
	Slide 53: The this keyword (1/3)
	Slide 54: The this keyword (2/3)
	Slide 55: The this keyword (3/3)
	Slide 56: We’re done!
	Slide 57: TopHat Question
	Slide 58: Summary
	Slide 59: Simplifying our code using turnLeft
	Slide 60: turnAround (1/3)
	Slide 61: turnAround (2/3)
	Slide 62: turnAround (3/3)
	Slide 63: Summary (1/2)
	Slide 64: Summary (2/2)
	Slide 65: Announcements
	Slide 66: Intro to SRC!!!!!!
	Slide 67: Meet your STAs!
	Slide 68: SRC @ Brown (by the numbers)
	Slide 69
	Slide 70
	Slide 71
	Slide 72: Our Philosophy:
	Slide 73: SRC in CS15
	Slide 74
	Slide 75: You may be asking…

