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Doubly Linked List (1/3)
• Is there an easier/faster way to get to previous node 

while removing a node?
o with Doubly Linked Lists, nodes have references both to next 

and previous nodes

o can traverse list both backwards and forwards – Linked List still 
stores reference to front of list with head and back of list with 

tail

o modify Node class to have two pointers: next and prev
o eliminates pointer-chasing loop because prev points to 

predecessor of every Node, at cost of second pointer

o classic space-time tradeoff! 
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Doubly Linked List (2/3)

• For Singly Linked List, processing typically goes from first to last 
node, e.g. search, finding place to insert or delete

• Sometimes, particularly for sorted list, need to go in the opposite 

direction 
o e.g., sort CS15 students on their final grades in ascending order. Find 

lowest numeric grade that will be recorded as an “A”. Then ask: who 

has a lower grade but is closer to the “A” cut-off, i.e., in the grey area, 

and therefore should be considered for “benefit of the doubt”?

88.3 91.1 93.5 98.787.1 ……
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Doubly Linked List (3/3)

• This kind of backing-up can’t easily be done with the 

Singly Linked List implementation we have so far

o could build our own specialized search method, which would scan from 
the head and be, at a minimum, O(n)

• It is simpler for Doubly Linked Lists:

o find student with lowest “A” using search

o use prev pointer, which points to the predecessor of a node (O(1)), and 

back up until hit end of B+/A- grey area
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Lecture 19
Stacks, Queues, and Trees
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Stacks and Queues

Abstractions that are Wrappers for MyLinkedList
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Outline

• Stacks and Queues

• Trees
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Stacks
● Stack has special methods for insertion 

and deletion, and two others for size
o push and pop

o isEmpty, size

● Instead of being able to insert and delete 

nodes from anywhere in the list, can 

only add and delete nodes from top of 
Stack
o LIFO (Last In, First Out)

● We’ll implement a stack with a linked list



9/107Andries van Dam © 2024 11/12/24

Methods of a Stack

● Add element to top of stack

● Remove element from top of stack

● Returns whether stack has any elements

● Returns number of elements in stack

public void push(Type el)

public Type pop()

public boolean isEmpty()

public int size()
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Stack Constructor ● When generic Stack is 

instantiated, it contains an empty 
MyLinkedList

● When using a stack, you will 
replace the generic Type with type 

of object your Stack will hold –

enforces homogeneity

● Note: Stack uses classic “wrapper” 

pattern to modify functionality of 

the wrapped data structure, 
MyLinkedList, and to add other 

methods  

public class Stack<Type> {

private MyLinkedList<Type> list;

public Stack() {

this.list = new MyLinkedList<>();

}

/* other methods elided */

}
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321

Implementing Push 

● Let’s see behavior...

● When element is pushed, it is always added to front of list

● Thus, Stack delegates to the MyLinkedList, this.list
to implement push

//in the Stack<Type> class ...

public Node<Type> push(Type newData) {

return this.list.addFirst(newData);

}
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Implementing Pop 

//in the Stack<Type> class ...

public Type pop() {

return this.list.removeFirst();

}

● Let’s see what this does...

● When popping element, it is always 
removed from top of Stack, so call 

removeFirst on MyLinkedList –

again, delegation

● removeFirst returns element 

removed, and Stack in turn returns it

● Remember that removeFirst
method of MyLinkedList first checks 

to see if list is empty
1

3

2
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isEmpty

● Stack will be empty if the 

MyLinkedList, list, is 

empty - delegation

● Returns true if Stack is 

empty; false otherwise

//in the Stack<Type> class ...

public boolean isEmpty() {

return this.list.isEmpty();

}
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size

● Size of Stack will be number of 

elements that the MyLinkedList, 
list contains – delegation

● Size is updated whenever Node is 

added to or deleted from list
during push and pop methods

//in the Stack<Type> class ...

public int size() {

return this.list.size();

}
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TopHat Question

Look over the following code:

Who’s left in the stack?

Stack<HeadTA> myStack = new Stack<>(); A. htaSarah
myStack.push(htaSarah); B. htaGrace
myStack.push(htaGrace); C. htaKarim
myStack.pop(); D. none of them!
myStack.push(htaKarim);
myStack.pop();
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Example:  Execution Stacks
● Each method has an Activation Record (AR) – recall recursion lecture

o contains execution pointer to next instruction in method

o contains all local variables and parameters used by method

● When methods execute and call other methods, Java uses a Stack to 

keep track of the order of execution:  “stack trace”
o when a method calls another method, Java adds activation record of called 

method to Stack

o when new method is finished, its AR is removed from Stack, and previous 

method is continued

o method could be different or a recursively called clone, when execution pointer 

points into same immutable code, but different values for variables/parameters
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Execution Stacks

AR of Method 
E

AR of Method 
D

AR of Method 
C

AR of Method 
B

AR of Method 
A

Top of Stack

A

E

B

D

C

A calls B

B calls C

… etc. 

When E finishes, its AR is popped. Then D’s AR is popped, etc.  Note this 

handles the tracking of invocations (clones) in recursion automatically 
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Stack Trace

● When an exception is thrown in a program, get a long 
list of methods and line numbers known as a stack trace

Exception in thread “main” java.lang.NullPointerException
at DoodleJump.scroll(DoodleJump.java:94)
at DoodleJump.updateGame(DoodleJump.java:44)
...

● A stack trace prints out all methods currently on  

execution stack 

● If exception is thrown during execution of recursive 

method, prints all calls to recursive method
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Bootstrapping Data Structures

● This implementation of the stack data structure uses a 

wrapper of a contained MyLinkedList, but user has no 

knowledge of that

● Could also implement it with an Array or ArrayList

o Array implementation could be more difficult--Array’s have fixed size, so       

would have to copy our Array into a larger one as we push more objects onto 

the Stack

o User’s code should not be affected even if the implementation of Stack changes 

(true for methods as well, if their semantics isn’t changed) – loose coupling!

● We’ll use the same technique to implement a Queue
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What are Queues?
● Similar to stacks, but elements are 

removed in different order
o information retrieved in the same 

order it was stored

o FIFO: First In, First Out (as 

opposed to stacks, which are 

LIFO: Last In, First Out)

● Examples:
o standing in line for merch at the 

Eras Tour

o waitlist for TA hours after 

randomization
Server at Seattle restaurant reminding 

herself what order customers get served in
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Methods of a Queue

• Add element to end of queue

• Remove element from beginning of queue

• Returns whether queue has any elements

• Returns number of elements in queue

public void enqueue(Type el)

public Type dequeue()

public boolean isEmpty()

public int size()
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Enqueuing and Dequeuing

Before Enqueuing

1      2     3

head of

queue
tail of

queue

4

student to  

add

After Enqueuing

1     2     3      4

head of

queue

tail of

queue

● Enqueuing: adds a node

● Dequeuing: removes a node
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Enqueuing and Dequeuing

1

dequeued 

student

Before Dequeuing

head of

queue

1     2     3     4

tail of

queue

2      3     4

After Dequeuing

head of

queue

tail of

queue

● Enqueuing: adds a node to the back

● Dequeuing: removes a node from the front
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Our Queue

● Contain a MyLinkedList within Queue class
o enqueue will add to the end of MyLinkedList
o dequeue will remove the first element in MyLinkedList

public class Queue<Type> {

private MyLinkedList<Type> list;

public Queue() {
this.list = new MyLinkedList<>();

}
// Other methods elided

}

● Again use a wrapper for a contained MyLinkedList. As with Stack, 

we’ll hide most of MLL’s functionality and provide special methods that 

delegate the actual work to the MLL  
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enqueue

● Just call list’s addLast method – delegation

public void enqueue(Type newNode) {

this.list.addLast(newNode);

}

• This will add newNode to end of list



27/107Andries van Dam © 2024 11/12/24

dequeue

● We want first node in list

● Use list’s removeFirst method – delegation

● What if list is empty? There will be nothing to dequeue!

● Our MyLinkedList class’s removeFirst() method returns 

null in this case, so dequeue does as well

public Type dequeue() {

return this.list.removeFirst();

}
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isEmpty() and size()

● As with Stacks, very 

simple methods; just 

delegate to our wrapped 

MyLinkedList

public int size() {

return this.list.size();

}

public boolean isEmpty() {

return this.list.isEmpty();

}
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TopHat Question 
In order from head to tail, a queue contains the following: katara, 

sokka, aang, momo. We remove each avatar from the queue by calling 

dequeue() and then immediately push() each dequeued avatar onto a 

stack.

At the end of the process, what is the order of the stack from top to 

bottom? 

A. katara, sokka, aang, momo
B. katara, momo, sokka, aang
C. momo, aang, sokka, katara
D. It's random every time. 
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Outline

• Stacks and Queues

• Trees
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Trees
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Searching in a Linked List (1/2) 
● Searching for element in LinkedList involves pointer chasing and 

checking consecutive Nodes to find it (or not) 

○ it is sequential access
○ O(N) – can stop sooner for element not found if list is sorted

● Getting Nth element in an Array or ArrayList by index is random 

access (which means O(1)), but (content-based) searching for 

particular element, even with index, remains sequential O(N)  

● Even though LinkedLists support indexing (dictated by Java’s 

List interface), getting the ith element is also done (under the 

hood) by pointer chasing and hence is O(N)
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Searching in a Linked List (2/2)
● For N elements, search time is O(N)

o unsorted:  sequentially check every node in list until element (“search 

key”) being searched for is found, or end of list is reached

▪ if in list, for a uniform distribution of keys, average search time for a 
random element is N/2

▪ if not in list, it is N 

o sorted:  average* search time is N/2 if found, N/2 if not found (the win!)

o we ignore issue of duplicates

● No efficient way to access Nth node in list (via index)

● Insert and remove similarly have average search time of N/2 to 

find the right place

*Actually more complicated than this – depends on distribution of keys
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Searching, Inserting, Removing

Search if 

unsorted

Search if sorted Insert/remove after 

search

Linked list O(N) O(N) O(1)

Array O(N) O(log N) [coming 

next]

O(N)
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Binary Search (1/4)

● Searching sorted linked list is sequential access

● We can do better with a sorted array that allows random access at any 

index to improve sequential search

● Remember merge sort with search O(log2N) where we did “bisection” on 

the array at each pass

● If we had a sorted array, we could do the same thing

○ start in the middle

○ keep bisecting array, deciding which portion of the sub-array the search key 
lies in, until we find that key or can’t subdivide further (not in array)

○ For N elements, search time is O(log2N) (since we reduce number of 

elements to search by half each time), very efficient!
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Binary Search (2/4)

● log2N grows much more slowly than N, especially for large N

N (int) log(N)

1

10

100

1,000

10,000

1,000,000

10,000,000

100,000,000

1,000,000,000

0

3

7

10

13

17

20

23

27*relatively small n in this graph, but imagine how 

large the difference is as n increases
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Binary Search (3/4)

● A sorted array can be searched quickly using bisection because arrays 

are indexed

● ArrayLists (implemented in Java using arrays) are indexed too, so a 

sorted ArrayList shares this advantage! But inserting and removing from 

ArrayLists is slow (except for insertion and removal at either end)! 

o Inserting into or deleting from an arbitrary index in ArrayList causes all successor 

elements shift over. Thus insertion and deletion have same worst-case run time O(N)

● Advantage of linkedLists is insert/remove by manipulating pointer chain is 

faster [O(1)] than shifting elements [O(N)], but search can’t be done with 

bisection , a real downside if search is done frequently
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Binary Search (4/4)

● Is there a data structure that provides both search speed of sorted 
arrays and ArrayLists and insertion/deletion efficiency of linked lists?

● Yes, indeed! Trees! They provide much faster searching than linked 

lists and much faster insertions than arrays!
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Trees vs Linked Lists (1/2) 

● Singly linked list – collection of nodes where each node references 

only one neighbor, the node’s successor:
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Trees vs Linked Lists (2/2) 

● Tree – also collection of 

nodes, but each node may 

reference multiple 

successors/children

● Trees can be used to 

model a hierarchical 

organization of data

root
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Technical Definition of a Tree 

● Finite set, T, of one or more nodes 

such that:

o T has one designated root node

o remaining nodes partitioned into 

disjoint sets: T1, T2,  … Tn

o each Ti is also a self-contained 

tree, called subtree of T

● Look at the image on the right-

where have we seen seen such 

hierarchies like this before?

root

T1

T2

T3
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Graphical Containment Hierarchies as Trees
● Levels of containment of GUI components

● Higher levels contain more components

● Lower levels contained by all above them

o Panes contained by root pane, which is 

contained by Scene

Scene

BorderPane

root

Pane

gamePane

Rectangle
doodle

Rectangle
platform

VBox

controlPane

Button

b1

Label

l1
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Tree Structure

● Note that the tree structure 

has meaning

o any subtree of T, Ti, is also 

a tree with specific values

● Can be useful to only examine 

specific subtrees of T

root

T1

T2

T3
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Tree Terminology 
● A is the root node

● B is the parent of D and E

● D and E are children of B

● (C         F) is an edge

● D, E, F, G, and I are external nodes or leaves 

o (i.e., nodes with no children)

● A, B, C, and H are internal nodes

● depth (level) of E is 2 (number of edges to root)

● height of the tree is 3 (max number of edges in path from root)

● degree of node B is 2 (number of children)

A

B

H

C

D G

I

E F
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Binary Trees
● Each internal node has a maximum of 2 

successors, called children
o i.e., each internal node has degree 2 at most

● Recursive definition of binary tree: A binary 

tree is either an:
o external node (leaf), or

o internal node (root) with one or two binary trees 

as children (left subtree, right subtree)
o empty tree (represented by a null pointer)

o Note: These nodes are similar to the linked list 

nodes, with one data and two child pointers –

we show the data element inside the circle

A

B C

ED F

G
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Properties of Binary Trees (1/2)
● A binary tree is full when each node has exactly zero or two children

● Binary tree is perfect when, for every level i, there are 2i nodes (i.e., 

each level contains a complete set of nodes)
o thus, adding anything to the tree would increase its height

Level

0

1

2

3
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Properties of Binary Trees (2/2)

● In a full Binary Tree: (# leaf nodes) = (# internal nodes) + 1

● In a perfect Binary Tree: (# nodes at level i) = 2i

● In a perfect Binary Tree: (# leaf nodes) <= 2(height)

● In a perfect Binary Tree: (height) >= log2(# nodes) - 1
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Binary Search Tree a.k.a BST (1/2)

● Binary search tree stores keys in its nodes such that, for every 

node, keys in left subtree are smaller, and keys in right subtree are 

larger
M

H P

O Y

S

B J

A I L

Note: the keys here are 

sorted alphabetically!  
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BST (2/2)
● Below is also BST but much less balanced. Gee, it looks like a linked list!

● The shape of the trees is determined by the order in which elements are 

inserted

H

More Balanced

B M

A T

V

M

Unbalanced

H

B

A

T

V
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BST Class (1/4)
● What do BSTs know how to do?

o much the same as sorted linked lists: insert, remove, size, empty

o BSTs also have their own search method – a bit more 

complicated than simply iterating through its nodes

● What would an implementation of a BST class look like…

o in addition to data, left, and right child pointers, we’ll add a parent 
“back” pointer for ease of implementation (for the remove method 

– analogous to the previous pointer in doubly-linked lists!)

o you’ll learn more about implementing data structures in CS200!
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Nodes, data items, and keys

● item is a composite that can contain many properties, 

● one of which is a key that Nodes are sorted by (here, 

ISBN #)

Node<Book>

item
parent
right
left

Book

isbn = 9783245206 
pubDate = …
title = …
author = …

BinarySearchTree

root

null

Node<Book>

...

Node<Book>

...
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Java’s Comparable<Type> interface (1/3)

• Previously we used == to check if two things are equal
o this only works correctly for primitive data types (e.g., int), or when we are comparing 

two variables referencing the exact same object

o to compare Strings, need a different way to compare things

• We can implement the Comparable<Type> generic interface provided by Java

• It specifies the compareTo method, which returns an int

• Why don’t we just use ==, even when using something like ISBN, which is an int? 
o can treat ISBNs as ints and compare them directly, but more generally we implement 

the Comparable<Type> interface, which could easily accommodate comparing 

Strings, such as author or title, or any other property
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Java’s Comparable<Type> interface (2/3)

• The Comparable<Type> interface is specialized (think of it as 

parameterized) using generics

• Call compareTo on a variable of same type as specified in 

implementator of interface (Book, in our case)

o currentBook.compareTo(bookToFind);

public interface Comparable<Type> {
int compareTo(Type toCompare);

}
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Java’s Comparable<Type> interface (3/3)

• compareTo method must return an int
o negative if element on which compareTo is called is less than 

element passed in as the parameter of the search

o 0 if element is equal to element passed in

o positive if element is greater than element passed in

o sign of int returned is all-important, magnitude is not and is 

implementation dependent

• compareTo not only used for numerical comparisons–it 

could be used for alphabetical or geometric comparisons 

as well–depends on how you implement compareTo
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“Comparable” Book Class
• Recall format for compareTo:

o elementA.compareTo(elementB)

• Book class now implements 
Comparable<Book>
o this means we can compare books,

using bookA.compareTo(bookB)

• compareTo is defined according to 

these specifications 
o returns number that is <0, 0 or >0, 

depending on the ISBN numbers

o < 0 if stored this.isbn < toCompare
o == 0 if this.isbn == toCompare
o > 0 if this.isbn > toCompare

public class Book implements Comparable<Book> {
// variable declarations, e.g., isbn, elided
public Book(String author, String title,

int isbn){
//variable initializations elided

}

public int getISBN(){
return this.isbn;

}

//other methods elided

//compare isbn of book passed in to stored one

@Override
public int compareTo(Book toCompare){

return (this.isbn - toCompare.getISBN());
}

}
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BST Class (2/4) 

public class BinarySearchTree<Type extends
Comparable<Type>> {

private Node<Type> root;

public BinarySearchTree(Type item) {
//Root of the tree
this.root = new Node(item, null);

}

// other methods shown next slide

}

• In our example, use Book as Type
• In generics, extends is used both for 

‘extends’ and ‘implements’

• Using keyword extends in this 

way ensures that Type
implements Comparable<Type>

○ note nested <>; shows it modifies 

Type and not the class

○ for generics, extends is used 

instead of implements for 

interfaces

• All elements stored in 
MyLinkedList must now have 

compareTo method for Type;

thus restricts generic
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BST Class (3/4) 

public class BinarySearchTree<Type extends
Comparable<Type>> {

private Node<Type> root;

public BinarySearchTree(Type item) {
//Root of the tree
this.root = new Node(item, null);

}

public void insert(Type newData) {
// . . . 

}

//class continued
public void remove(Type dataToRemove) {

// . . . 
}

public Node<Type> search(Type dataToFind) {
// . . . 

}

public int size() {
// . . . 

}

} // end of class
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BST Class (4/4) 
● Our implementations of LinkedLists, Stacks, and Queues are “smart” 

data structures that chain “dumb” nodes together

o the lists did all the work by maintaining previous and current 

pointers and did the operations to search for, insert, and remove 

information – thus, nodes were essentially data containers

● Now we will use a “dumb” tree with “smart” nodes that will delegate 

using recursion

o tree will delegate action (such as searching, inserting, etc.) to its 

root, which will then delegate to its appropriate child, and so on

o creates specialized Node class that stores its item, parent, and 

children, and can perform operations such as insert and remove
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BST: Node Class (1/3)

● “Smart” Node includes the following methods:

// pass in entire data item, containing key, so compareTo() will work

public Node<Type> search(Type itemToFind);

public Node<Type> insert(Type newItem);

/* remove deletes Node pointing to dataToRemove, which contains key; 
removing Node also will remove the matched data element instance unless 
there’s another reference to it */

public Node<Type> remove(Type itemToRemove);

● Plus setters and getters of instance variables, defined in the next 

slides …
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BST: Node Class (2/3)  
● Nodes have a maximum of two non-null children that hold 

data implementing Comparable<Type>
o four instance variables: item, parent, left, and right, with each having a 

get and set method.

o item represents the data that Node stores. It also contains the key attribute 

that Nodes are sorted by – we’ll make a Tree that stores Books

o parent represents the direct parent (another Node) of Node–only used in 

remove method

o left represents Node’s left child and contains a subtree, all of whose data is 

less than Node’s data

o right represents Node’s right child and contains a subtree, all of whose 

data is greater than Node’s data

o arbitrarily select which child should contain data equal to Node’s data 
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BST: Node Class (3/3)  
public class Node<Type implements Comparable<Type>> {

private Type item;

private Type parent;

private Node<Type> left;

private Node<Type> right;

public Node(Type item, Node<Type> parent){ //construct a leaf node as default

this.item = item;

this.parent = parent;

//child ptrs null for leaf nodes; set for internal nodes when child is created

this.left = null; 

this.right = null;

}

// will define other methods in next slides…   

}
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Smart Node Approach
● BinarySearchTree is “dumb,” so it delegates to root, which in 

turn will delegate recursively to its left or right child, as appropriate

// search method for entire BinarySearchTree:

public Node<Type> search(itemToFind) {

return this.root.search(itemToFind);

}

● Smart node approach makes our code clean, simple and elegant

o non-recursive method is much messier, involving explicit bookkeeping of 

which node in the tree we are currently processing

▪ we used the non-recursive method for sorted linked lists, but trees are more 

complicated, and recursion is easier – a tree is composed of subtrees!
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Let’s Search a BST For a step-by-step 

walkthrough of this 
algorithm, see slide 82
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TopHat Question

What's the runtime of (recursive) search in a BST and why?

A. O(n) – because you only iterate once

B. O(2n) – because you go visit both the left and right subtrees

C. O(n/2) – because you incorporate the idea of “bisection” to eliminate 

half the number of nodes to search at each recursion

D. O(log2n) - because you incorporate the idea of “bisection” to eliminate 

half the number of nodes to search at each recursion

E. O(n2) – because recursion makes your runtime quadratic 
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Searching a BST Recursively Is O(log2N)
● Search path: start with root M and choose path to I (for 

a reasonably balanced tree, M will be more or less “in 

the middle,” and left and right subtrees will be                                                                             

roughly the same size)

o structurally, the height of a reasonably

balanced tree with n nodes is about log2n

o at most, we visit each level of the tree once 

o so, runtime performance of searching is                                            
O(log2N) as long as tree is reasonably                                           

balanced, which will be true if entry order                                                  

is reasonably random

o O(log2N) is much less than N, this is thus much more efficient!
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Searching a BST Recursively 
public Node<Type> search(Type itemToFind) {

//if item is the thing we’re searching for

if(this.item.compareTo(itemToFind) == 0) {

return this.item;

//if item > itemToFind, can only be in left tree

} else if(this.item.compareTo(itemToFind) > 0) {

if(this.left != null) {

return this.left.search(itemToFind);

} 

//if item < itemToFind, can only be in right tree

} else if (this.right != null) {

return this.right.search(itemToFind);

}

}

//Only get here if itemToFind isn’t in tree, otherwise would’ve returned sooner

return null; 

}

M
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O Y

S

B J

A I L
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Let’s Add to a BST (1/3) For a step-by-step 

walkthrough of this 
algorithm, see slide 90
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Let’s Add to a BST (2/3) For a step-by-step 

walkthrough of this 
algorithm, see slide 90
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Let’s Add to a BST (3/3) For a step-by-step 

walkthrough of this 
algorithm, see slide 90
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Insertion into a BST 
● Search BST starting at root until we find where the data to 

insert belongs

o insert data when we reach a Node whose appropriate L or R child is null

● That Node makes a new Node, sets the new Node’s data
to the data to insert, and sets child reference to this new 
Node

● Runtime is O(log2N), yay!

o O(log2N) to search the nearly balanced tree to find the place to insert

o constant time operations to make new Node and link it in
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Insertion Code in BST

//Tree’s insert delegates to root

public Node<Type> insert(Type newItem) {

//if tree is empty, make first node. No traversal necessary!

if(this.root == null) {

this.root = new Node(newItem, null); //root’s parent is null

return this.root;

} else {

//delegate to Node’s insert() method

return this.root.insert(newItem);

}

}

● Again, we use a “Smart Node” approach and delegate



72/107Andries van Dam © 2024 11/12/24

Insertion Code in Node
public Node<Type> insert(Type newItem) { //insert method continued!

if (this.item.compareTo(newItem) > 0) { //newItem should be in left subtree

if(this.left == null) { //left child is null – we’ve found the place to insert!

this.left = new Node(newItem, this);

return this.left;

} else { //keep traversing down tree

return this.left.insert(newItem);

}       

} else { //newItem should be in right subtree

if(this.right == null) { //right child is null–we’ve found the place to insert!

this.right = new Node(newItem, this);

return this.right;

} else { //keep traversing down tree

return this.right.insert(newItem);

}       

}

}

Reference to the new Node is 

passed up the tree so it can be 

returned by the tree
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Notes on Trees (1/2) 

● Different insertion order of nodes results in different trees

o if you insert a node referencing data value of 18 into empty tree, that node will 

become root

o if you then insert a node referencing data value of 12, it will become left child of root

o however, if you insert node referencing 12 into an empty tree, it will become root

o then, if you insert one referencing 18, that node will become right child of root

o even with same nodes, different insertion order makes different trees!

o on average, for reasonably random (unsorted) arrival order, trees will look similar in 

depth so order doesn’t play a major role in runtime
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Notes on Trees (2/2) 

● When searching for a value, reaching another value that is greater 

than the one being searched for does not mean that the value 

being searched for is not present in tree (whereas it does in linked 

lists!)

o it may well still be contained in left subtree of node of greater 

value that has just been encountered

o thus, where you might have given up in linked lists, you can’t 

give up here until you reach a leaf (but depth is roughly 

log2N for a nearly balanced tree, which is much smaller than 

N/2!)
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Preorder Traversal of BST
● Preorder traversal

o “pre-order” because self is visited before (“pre-”) visiting children

o again, use recursion!

public void preOrder() {

//Check for null children elided

System.out.println(curr.item);

this.left.preOrder();

this.right.preOrder();

}

M
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O
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S

Y

Preorder traversal!
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Postorder Traversal of BST
● Postorder traversal

o “post-order” because self is visited after (“post-”) visiting children

o again, use recursion!

public void postOrder() {

//Check for null children elided

this.left.postOrder();

this.right.postOrder();

System.out.println(curr.item);

}
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Postorder traversal!
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Inorder Traversal of BST
● Inorder traversal

o “in-order” because self is visited between (“in-”) visiting children

o again, use recursion!

public void inOrder() {

//Check for null children elided

this.left.inOrder();

System.out.println(curr.item);

this.right.inOrder();

}

M
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S
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A I L

A B H I J L M O P S Y

To learn more about the exciting world of trees, take CS200 (CSCI0200): Program Design 

with Data Structures and Algorithms!
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Inorder traversal!
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Tree Runtime
● Binary Search Tree has a search of O(log2n) runtime, can we make it faster?

● Could make a ternary tree! (each node has at least 3 children)

o O(log3n) runtime

● Or a 10-way tree with O(log10n) runtime

● Let’s try the runtime for a search with 1,000,000 nodes

o log101,000,000 = 6

o log21,000,00 < 20, so shallower but broader tree

● Analysis: the logs are not sufficiently different and the comparison (basically an 

n-way nested if-else-if) is far more time consuming, hence not worth it

● Furthermore, binary tree makes it easy to produce an ordered list
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Prefix, Infix, Postfix Notation for 

Arithmetic Expressions (1/2)
• When you type an equation into a spreadsheet, you use Infix; 

when you type an equation into many Hewlett-Packard 

calculators, you use Postfix, also known as “Reverse Polish 

Notation,” or “RPN,” after its inventor Polish Logician Jan 

Lukasiewicz (1924)

• Easier to evaluate Postfix because it has no parentheses and 

evaluates in a single left-to-right pass

• Use Dijkstra’s 2-stack shunting yard algorithm to convert from 

user-entered Infix to easy-to-handle Postfix – compile or 

interpret it on the fly
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Prefix, Infix, Postfix Notation for 

Arithmetic Expressions (2/2)

• Infix, Prefix, and Postfix refer to 

where the operator goes relative 

to its operands
o Infix: (fully parenthesized)

▪ ((1 * 2) + (3 * 4)) - ((5 - 6) + (7 / 8))

o Prefix:

▪ - + * 1 2 * 3 4 + - 5 6 / 7 8

o Postfix:

▪ 1 2 * 3 4 * + 5 6 - 7 8 / + -

• Graphical representation for 

equation:
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Announcements
• Tetris deadlines

o late handin: Wednesday 11/13

o keep an eye out for Tetris code debriefs

• COME TO LECTURE THURSDAY TO LEARN ABOUT FPs AND 

HAVE A FUN TIME!

• HTA Hours Friday 3-4pm (as always!) in CIT 209
o come talk to us about which FP to do!

• Reminder to resubmit all non-MF projects by end of semester

• Reminder that you cannot use late days on FPs, and can only use 

max 2 on Tetris no matter how many you have left

• DoodleJump form on Ed

• Final mentor meetings – keep an eye on your emails - talk about 

registering for classes (coming up soon! come talk to us about 

200!)
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Appendix

• Searching Simulation

• Insertion Demonstration

• Remove
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Searching Simulation (animated) 

● What if we want to know if 224 is in Tree?

● Tree says:

123

252

224

16

“Hey Root!  Ya got 

224?”

“Let’s see. I’m not 224. 

But if 224 is in tree, 

since it’s larger, it 

would be to my right. I’ll 

ask my right child and 
return its answer.”

123 says: 
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Searching Simulation (animated) 

● What if we want to know if 224 is in Tree?

“I’m not 224.  I 

better ask my left 

child and return 

its answer.”

252 says:

123

252

224

16
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Searching Simulation (animated) 

● What if we want to know if 224 is in Tree?

“224? That’s me!  

Hey, caller (252)

here’s your 

answer.”

224 says:

(returning node indicates that 

query is in tree)

Answer: 224 is in the Tree!

123

252

224

16
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Searching Simulation (animated) 

● What if we want to know if 224 is in Tree?

“Hey, caller (123)!  

Here’s your answer.”

252 says:

Answer: 224 is in the Tree!

Answer: 224 is in the Tree!

123

252

224

16
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Searching Simulation (animated) 

● What if we want to know if 224 is in Tree?

Answer: 224 is in the Tree!

“Hey, Tree! Here’s your 

answer”

123 says:

Answer: 224 is in the Tree!

123

252

224

16
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Searching Simulation - Recap
● What if we want to know if 224 is in Tree?

● Tree says “Hey Root! Ya got 224?”

● 123 says:  “Let’s see. I’m not 224. But if 

224 is in tree, it would be to my right. I’ll

ask my right child and return its answer.”

● 252 says:  “I’m not 224, it’s smaller than me. I better ask my left 

child and return its answer.”

● 224 says:  “224? That’s me! Hey, caller (252) here’s your answer.”  

(returning node indicates that query is in tree)

● 252 says:  “Hey, caller (123)! Here’s your answer.”

● 123 says:  “Hey, Tree! Here’s your answer.”`

123

252

224

16

Root
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Searching a BST Recursively Is O(log2N)

● Search path: start with root M and choose path to I (for 

a reasonably balanced tree, M will be more or less “in 

the middle,” and left and right subtrees will be                                                                             

roughly the same size)

o structurally, the height of a reasonably

balanced tree with n nodes is about log2n

o at most, we visit each level of the tree once 

o so, runtime performance of searching is                                            
O(log2N) as long as tree is reasonably                                           

balanced, which will be true if entry order                                                  

is reasonably random (slide 87)
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Appendix

• Searching Simulation

• Insertion Demonstration

• Remove
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Insertion into a BST(1/2) 
● Search BST starting at root until we find where the data to 

insert belongs

o insert data when we reach a Node whose appropriate L or R child is null

● That Node makes a new Node, sets the new Node’s data
to the data to insert, and sets child reference to this new 
Node

● Runtime is O(log2N), yay!

o O(log2N) to search the nearly balanced tree to find the place to insert

o constant time operations to make new Node and link it in
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Insertion into a BST(2/2) 

● Example: Insert 115

Befor

e:

100

150

125 200

175140

50

80

75 85

30

20

After:

200

100

150

125

175140857520

30 80

115

50
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Insertion Simulation (1/4) 

● Insert: 224

● First call insert in BST:

this.root = this.root.insert(newData);

root 123

25216
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Insertion Simulation (2/4)

● 123 says: “I am less than 224. I’ll let my right child deal 

with it.”
if (this.data.compareTo(newData) > 0) {

//code for inserting left elided 

} else {

if(this.right == null) {

//code for inserting with null right child elided

} else {

return this.right.insert(newData);

}       

}

123

25216
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Insertion Simulation (3/4) 

● 252 says: “I am greater than 224.  I’ll pass it on to my left child –

but my left child is null!”

if (this.data.compareTo(newData) > 0) { 

if(this.left == null) {

this.left = new Node(newData, this);

return this.left;

} else { 

//code for continuing traversal elided

}       

} 

123

25216
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Insertion Simulation (4/4) 
● 252 says:  “You belong as my left child, 224. Let me make a node 

for you, make this new node your home, and set that node as my 

left child. Lastly, I will return a pointer to the new left node”. (And 

each node, as its recursive invocation ends, passes the pointer to the new 224 node 

up to its parent, eventually up to whatever method called on the tree’s search)

this.left = new Node(newData, this);

return this.left;

Before 123

25216

224

After 123

25216
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Appendix

• Searching Simulation

• Insertion Demonstration

• Remove
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Remove: No Child Case

● Node to remove has no children (is 

a leaf)

o just set the parent’s reference 

to this Node to null – no more 

references means the Node is 

garbage collected!

● Example: Remove P

o set O’s right child to null, and 

P is gone!

After: M

H Q

O Y

S

B J

A I L Poof!

Before: M

H Q

O Y

S

B J

A I L P
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Remove: One-Child Case
● Harder case: Node to delete has one 

child

o replace Node child

● Example: Remove O

o O has one child

o Q replaces O by replacing its left 

child, previously O, with P

o we know that all of the children of O 

are less than Q and greater than M. 

So, making O’s child a child of Q 

results in a valid BST!

After: M

H Q

P Y

S

B J

A I L
Pow!

Before: M

H Q

O Y

S

B J

A I L P
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Remove: Two-Children Case (1/3)
● Hard case: node to remove has two internal children

o brute force: just flag node for removal, and rewrite tree at a later time --

bad idea, because now every operation requires checking that flag.  

Instead, do the work right away

o this is tricky, because not immediately obvious which child should 

replace its parent 

o slow solution: re-insert each member of one of the sub-trees. Might be 

bad, O(n), even for a balanced tree.

o non-obvious solution: first swap the data in Node to be removed with 

data in a Node that doesn’t have two children, then remove Node using 

one of simpler remove cases      
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Remove: Two-Children Case (2/3)
● Use an auxiliary method, swapData

o swaps data in node to be removed with the data in the right-most 

node in its left subtree

o this child has a key value less than all Nodes in the to-be removed 

Node’s right subtree, and greater than all other nodes in its left 

subtree 

o since it is a right-most Node, it has at most one child because if it 

is the right most child, it won’t have any right children

o this swap is temporary–we then remove the node in the right-most 

position using simpler remove
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Before:

QN

P
U

Remove: Two-Children Case (3/3)

● How do we remove R?

o R has two children

o swap R with the right-most Node in the left 

subtree, the largest Node less than R, which 

will be Q

o observe the following relationship, which 

must be maintained after the swap:

- children in R’s left subtree are smaller than Q

- children in R’s right subtree are larger than Q

- R is in the wrong place but…

o remove R (in its new position) using the 

one-child case

After:

U

M

H Q

O
Y

S

B J

A I L N

P

R
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Remove: BST Code
● Starts as usual with 

delegating to root

● Nodes are “smart,” so 

they can remove 

themselves

● Need to first find the 

Node to remove; if not 

null, it removes itself

● O(log2N) because of 

searching in a nearly 

balanced tree

// in BinarySearchTree class:

//BinarySearchTree’s remove takes a data element

public void remove(Type itemToRemove) {

Node<Type> toRemove = this.root.search(itemToRemove);

if (toRemove != null) {

//smart node’s remove takes no params

toRemove.remove();

}

}
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Remove: Node Code (1/3)
● In the Node class, remove method allows Node to 

remove itself

public Node<Type> remove() {

//Case 1 – Node to remove is a leaf node

//Set its parent’s reference that originally refers to this Node to null   

if(this.left == null && this.right == null) { //if it’s a leaf, set appropriate parent to null

if(this.parent.getLeft() == this) { 

this.parent.setLeft(null);

} else {

this.parent.setRight(null);

}

}

//Code for other cases on next slides…

}

Note: because a node 

removes itself, it 
compares the parents’ 
child pointers to itself 
via this
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Remove: Node Code (2/3)
public Node<Type> remove() {  //code for case 1 elided

//In a one-child case, we replace the _parent’s reference to Node with the Node’s child

} else if (this.left != null && this.right == null) { 

//case 2.1 – Node only has left child

if (this.parent.getLeft() == this) {

this.parent.setLeft(this.left);

} else {

this.parent.setRight(this.left);

}

} else if (this.left == null && this.right != null) { //case 2.2 – Node has only right child

if (this.parent.getLeft() == this) {

this.parent.setLeft(this.right);

} else {

this.parent.setRight(this.right);

}

} //Case 3 on next slide …

}

M

H P

O Y

S

B J

A I L
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● Successor is guaranteed to have at most one child, so we 

remove with simpler remove case

Remove: Node Code (3/3)

public Node<Type> remove() {

//code for case 1 (no children) elided

//code for case 2 (one child) elided

} else { //case 3 – both children

Node<Type> toSwap = this.swapItem(); //swap data with successor

toSwap.remove(); //now remove toSwap, which holds original Node’s data

return toSwap; //return toSwap, since toSwap was data we removed

}

return this; //return this if we didn’t do any swapping since Node is removed

}

//swapData() defined on next slide
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Remove: swapItem Code

public Node<Type> swapItem(){

Node<Type> curr = this.left; //first get left child

while(curr.getRight() ! = null) { //go right as far as possible

curr = curr.getRight();

}

//swap data of this Node and successor

Type tempItem = this.item;

this.data = curr.getItem();

curr.setItem(tempItem);

return curr;

}

● We find the right-most Node in left subtree, but we can also find the left-

most Node in right subtree
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