
1 / 66
Andries van Dam © 2024 10/24/24

Lecture 15
Design Patterns and Principles: Part 2

From xkcd Webcomics

https://xkcd.com/974/

2 / 66
Andries van Dam © 2024 10/24/24

Use of ChatGPT and other non-ATA GAI

• Strictly forbidden in CS15. See: collaboration policy

• If ATA doesn’t satisfy you, use Ed or go to

conceptual/debugging hours

• We can easily detect use of ChatGPT, etc., in your code

3 / 66
Andries van Dam © 2024 10/24/24

Back to Our Snake Program
• Specifications

o player moves snake via key input around board of squares with goal of

eating pellets to increase score

o snake can pivot left or right but not 180º

o gain score by eating pellets – different colors yield different scores

• Represent snake as ArrayList of BoardSquares and delegate to a

wrapper Snake class

• Represent board as 2D array of BoardSquares and delegate to a wrapper

Board class

• Today, we’ll cover details about snake movement and food

4 / 66
Andries van Dam © 2024 10/24/24

Overview

● Enums

● Factory Pattern

● Testing

● Interfaces v. Inheritance

● Method Overloading

5 / 66
Andries van Dam © 2024 10/24/24

Snake Movement (1/3)

• Snake keeps moving in the same direction until a key is pressed,
which triggers change in direction

• Direction in which the snake moves is a property or piece of state

• What have we learnt so far that we can use to represent a property
or piece of state for a class?

o instance variables!

• Need to indicate whether direction the snake is moving is up, down,
left, or right

• What type should our instance variable be?

6 / 66
Andries van Dam © 2024 10/24/24

Snake Movement (2/3)

• Can use Strings to store current
direction of snake movement

• Pro: easy to read and understand

• Con: value of strings can be
anything!

o e.g., the north direction can be
represented as “up”, “upward”,
“UP”, “upside” and many more

o can be confusing. It’s easy to
mistype a string causing
runtime bugs

public class Snake {

private String currDirection;

public Snake() {
this.currDirection = “up”;

}

}

7 / 66
Andries van Dam © 2024 10/24/24

Snake Movement (3/3)
• Alternatively, use integers to store current

direction of snake movement

• Pro: it is less likely to mistype an integer
compared to a string

• Con: the numbers used are arbitrary

o e.g., 1 can mean anything. If 1 is up, is
down -1 or 2?

o somebody reading your code wouldn’t
immediately understand what these
numbers mean

• Neither of the choices so far are good enough

• Can think of directions as constants e.g., the
cardinal points of a compass

o need an easier way to store current
direction from a set of constants

public class Snake {

private int currDirection;

public Snake() {
this.currDirection = 1;

}

}

8 / 66
Andries van Dam © 2024 10/24/24

Introducing Enums

• Enums are a special data type used to represent a group of related
constants

o e.g., the cardinal directions: north, south, east, west

o can create a Direction enum for this (next slide)

• The value of an enum can be any of the constants pre-defined for it

o the value of the Direction enum would be any of 4 directions

• In our program, use enums to represent the cardinal directions of snake
movement

9 / 66
Andries van Dam © 2024 10/24/24

Declaring and Defining an Enum

• Enums, just like classes, have their own .java
file.

o this file would be Direction.java

o in IntelliJ, an enum file will be shown by the
letter icon E

• Declare it as enum rather than class or
interface

• Declare the set of constants, in this case the 4
directions, separating them with commas

• Because they are constants, enum fields
should be in all UPPER_CASE letters

• To access the enum constants, use the dot
syntax:

Direction currDirection = Direction.UP;

public Direction {
UP, DOWN, LEFT, RIGHT;

}

enum

10 / 66
Andries van Dam © 2024 10/24/24

Using Enums: Snake Movement (1/3)
• Can use a Direction enum in Snake to store

direction of movement

o notice currDirection’s type is the
enum Direction. Not String or int

o currDirection is initialized to
Direction.RIGHT in constructor

o even though we only use
currDirection in the
changeDirection method, still
instance variable because it is an
attribute of the class

• Like any type in Java, enums can be used as
parameters to methods

o changeDirection sets current direction
to whatever is passed in

• Notice how intuitive the value of
currDirection is compared to when we
used Strings and ints!

public class Snake {

private Direction currDirection;

public Snake() {
this.currDirection = Direction.RIGHT;

}

public void changeDirection(Direction newDir) {
this.currDirection = newDir;

}

}

11 / 66
Andries van Dam © 2024 10/24/24

TopHat Question

Given the enum below, which of the following is a correct way to
initialize the gameStatus variable?

public enum Status {
PAUSED, RUNNING, STOPPED;

}

A. Status gameStatus = new Status(PAUSED);
B. Status gameStatus = Status(PAUSED);
C. Status gameStatus = Status.PAUSED();
D. Status gameStatus = Status.PAUSED;

Join Code: 316062

12 / 66
Andries van Dam © 2024 10/24/24

Using Enums: Snake Movement (2/3)

• Remember the handleKeyPress method
from lab4 & Cartoon?

o JavaFX provided it with arguments that
corresponded to Left, Right, or Space keys

o these KeyCodes were enums!

• Again, use a switch and call
changeDirection in each case, passing in
the corresponding direction

• But wait! There’s one specification with
snake movement we’ve ignored

o snake can pivot right or left, but not 180º

o thus check new direction passed from key
input is not the opposite of current direction

private void handleKeyPress(KeyCode code) {
switch (code) {

case UP:
this.snake.changeDirection(Direction.UP);
break;

case DOWN:
this.snake.changeDirection(Direction.DOWN);
break;

case LEFT:
this.snake.changeDirection(Direction.LEFT);
break;

case RIGHT:
this.snake.changeDirection(Direction.RIGHT);
break;

default:
break;

}

13 / 66
Andries van Dam © 2024 10/24/24

Using Enums: Snake Movement (3/3)

• Can use a series of if-else
statements to check that newDir is
not the direction opposite
currDirection

• Results in complicated, messy
code; need a simpler solution

o given a direction, can we find its
opposite?

o how can we have this functionality
be part of the enum so that snake
can use it?

public class Snake {

// other methods elided

public void changeDirection(Direction newDir) {
if (newDir == Direction.UP &&

this.currDirection != Direction.DOWN) {

this.currDirection = newDir;
} else if (newDir == Direction.DOWN &&

this.currDirection != Direction.UP) {
this.currDirection = newDir;

} else if (newDir == Direction.LEFT &&
this.currDirection != Direction.RIGHT) {

this.currDirection = newDir;
} else if (newDir == Direction.RIGHT &&

this.currDirection != Direction.LEFT) {
this.currDirection = newDir;

}

}

}

14 / 66
Andries van Dam © 2024 10/24/24

Introducing Enum Methods (1/3)

• Enums in java act like classes in that we
can define methods and other instance
variables within its body

o not a class, no constructor because
values already enumerated in the
declaration

• Can add a method, opposite, in our
enum, that returns the opposite direction
of the current direction

• But need to know what current direction
(initialized in Snake’s constructor) is

o can pass it to opposite as a
parameter. Anything wrong with this?

o repetitive since Snake would call:

currDirection.opposite(currDirection);

public enum Direction {
UP, DOWN, LEFT, RIGHT;

public Direction opposite() {
switch () {

case UP:
return DOWN;

case DOWN:
return UP;

case LEFT:
return RIGHT;

case RIGHT:
return LEFT;

}
}

}

Direction current
current

note: we don’t need a break at the

end of each case of the switch

statement because we are

returning from the method!

15 / 66
Andries van Dam © 2024 10/24/24

Enum Methods (2/3)

• Can instead pass this to
switch statement
o i.e., the value of Direction we

call opposite on:
currDirection.opposite();
o related to other uses of this

• If current is
Direction.LEFT, what would
currDirection.opposite()
return?

o Direction.RIGHT

public enum Direction {
UP, DOWN, LEFT, RIGHT;

public Direction opposite() {
switch () {

case UP:
return DOWN;

case DOWN:
return UP;

case LEFT:
return RIGHT;

case RIGHT:
return LEFT;

}
}

}

this

this is the current value of
currDirection. When opposite()

is called, we check said current
direction and return its opposite

16 / 66
Andries van Dam © 2024 10/24/24

Enum Methods (3/3)

• Back in Snake, can now check that
direction passed in from key input
is not the opposite of current
direction

• Use the != comparator to compare
two enum values

• Notice how much simpler our code
looks compared to the tower of if-
else statements?

• Adding methods to enums makes
them more robust and a useful data
type to have in a program

public class Snake {

private Direction currDirection;

//initialize currDirection to RIGHT
public Snake() {

this.currDirection = Direction.RIGHT;
}

public void changeDirection(Direction newDir) {
if (newDir != this.currDirection.opposite()) {

this.currDirection = newDir;
}

}

}

17 / 66
Andries van Dam © 2024 10/24/24

TopHat Question

Given the enum below, which of the following could be a method
in Operator?
public enum Operator {

ADD, SUBTRACT, MULTIPLY, DIVIDE;

}

public int calc(int a, int b) {
switch(a, b) {

case ADD:
return a + b;

case SUBTRACT:
return a – b;

case MULTIPLY:

return a * b;
case DIVIDE:

return a / b;
}

}

public int calc(int a, int b) {
switch(this) {

case 1:
return a + b;

case 2:
return a – b;

case 3:

return a * b;
case 4:

return a / b;
}

}

public int calc(int a, int b) {
switch(this) {

case ADD:
return a + b;

case SUBTRACT:
return a – b;

case MULTIPLY:
return a * b;

case DIVIDE:
return a / b;

}
}

A. B. C.

Join Code: 316062

18 / 66
Andries van Dam © 2024 10/24/24

Overview

● Enums

● Factory Pattern

● Testing

● Interfaces v. Inheritance

● Method Overloading

19 / 66
Andries van Dam © 2024 10/24/24

Representing the Food (1/3)

• Goal is to grow the Snake as much as
possible without moving it off screen
or into itself

• Snake grows by eating pellets which
are located on random positions on
the board

• In our version of the game, want to
model different types of the pellets

o each with a different color and
yielding different scores

• How can we generate these distinct
types of pellets?

20 / 66
Andries van Dam © 2024 10/24/24

Representing the Pellets (2/3)

• Can use interface and create different Pellet classes that
implement it?

• However, in the version of Snake we’re making, there’s very little
difference between Pellet types

o only difference is color and score which are properties of the class! No
difference in functionality (methods)

• Important to keep in mind project specifications when designing
because they affect our design choices

o only if there were different actions associated with each pellet, might
we want to use an interface

21 / 66
Andries van Dam © 2024 10/24/24

Representing the Pellets (3/3)

• Can use inheritance and factor out common implementation to super
class e.g., graphically remove pellets from board once eaten?

• But in our program, there is only method (eat()) in Pellet. No need
for super classes and sub classes

o like using a sledgehammer to crack a nut!

• Even if we extended functionalities of Pellet so that the class had
more capabilities, may need to override methods which can be
dangerous (see addendum at end of deck!)

• Any other option?

o recall how we generated different types of Scarfs in the Math and
Making Decisions lecture

o want to do something similar with Pellets

https://cs.brown.edu/courses/cs015/lecture/pdf/CS15.Lecture_8_Math_and_Making_Decisions.10.1.24.pdf
https://cs.brown.edu/courses/cs015/lecture/pdf/CS15.Lecture_8_Math_and_Making_Decisions.10.1.24.pdf

22 / 66
Andries van Dam © 2024 10/24/24

Factory Pattern (1/2)

• Can use Factory Pattern to create one Pellet class and
specify parameters to its constructor that will configure its
type, i.e., score and color

o allows us to instantiate different types of Pellets without caring
about creation logic

o a really useful pattern when creation logic is more complicated,
e.g., if each type of Pellet had a different shape. Or even with
Tetris pieces (coming up soon!)

23 / 66
Andries van Dam © 2024 10/24/24

Factory Pattern (2/2)

• Key features: a switch
statement

o in this case uses a random
number generator

o used on Fruit Ninja to
generate fruits/bombs

public void spawnFood() {
// gets random empty tile on board where food will be added
BoardSquare tile = this.getRandomEmptyTile();
Pellet food;
int rand = (int) (Math.random() * 3)
switch (rand) {

case 0:
food = new Pellet(this.gamePane, Color.RED, 10,

tile.getRow(), tile.getCol());
break;

case 1:
food = new Pellet(this.gamePane, Color.BLUE, 30,

tile.getRow(), tile.getCol());
break;

default:
food = new Pellet(this.gamePane, Color.GREEN, 50,

tile.getRow(), tile.getCol());
break;

}
tile.addFood(food);

}

public Pellet(Pane gamePane, Color color, int score,
int row, int col)

Pellet Constructor!

24 / 66
Andries van Dam © 2024 10/24/24

Overview

● Enums

● Factory Pattern

● Testing

● Interfaces v. Inheritance

● Method Overloading

25 / 66
Andries van Dam © 2024 10/24/24

Testing Our Program (1/2)

Testing involves checking that the

actual behavior of a program

matches it’s expected behavior

(you’ve done this by playing your

games!)

Original “Waterfall Model” of Software Development

Typically test at multiple

stages of development!

26 / 66
Andries van Dam © 2024 10/24/24

Testing Our Program (2/2)
• You already test your programs all the time – by playing them!

• As we scale in complexity, we can’t wait until we have all of the pieces put
together to test individual components

o we want to be incrementally developing, testing components, i.e., ”units” one at a time

• Unit Testing is useful for verifying that specific parts of our program work
(ex. a method)

• How could we test our snake program without even running it?

o e.g., check individual methods, such as isEmpty() method

▪ returns false when either pellet or snake is on tile

▪ returns true if no pellet or snake is on tile

o How to test our methods (along with printlns, stacktrace, and
debugger!)?

o Isolate, isolate, isolate the problem!

27 / 66
Andries van Dam © 2024 10/24/24

Introducing JUnit Testing
• A framework for writing and running tests

• JUnit allows individual methods and edge cases to be tested in a controlled
environment, a test suite

o what if you need to test the end condition of a game that takes 100 hours to complete?

o what if a bug only happens one every 1000 tries? Can’t manually simulate!

• Unit Testing in CS15 has the following pattern:

o set up testing class

o instantiate essential objects required to test method(s)

o use assertion methods to validate a boolean expression

• Assertion methods are JUnit methods we use to test

o assertTrue(boolean condition) will pass if the boolean expression inside is true

o assertFalse(boolean condition) will pass if the boolean expression inside is
false

• You will set up and practice with JUnit in this week’s lab (Check out Appendix A for more
details!)

28 / 66
Andries van Dam © 2024 10/24/24

JUnit Testing: Snake Example
public class SnakeTestingSuite {

@Test
public void testTileUpdates(){

Pane gamePane = new Pane();
Board board = new Board(gamePane);
Pellet pellet = new Pellet(gamePane,

Color.RED, Constants.SCORE, 1, 1);
BoardSquare tile = board.tileAt(1,1);

tile.addPellet(pellet);
assertFalse(board.tileAt(1,1).isEmpty());

tile.addSnake(); //eats pellet, but adds snake
assertFalse(board.tileAt(1,1).isEmpty());

tile.reset(); // removes snake
assertTrue(board.tileAt(1,1).isEmpty());

}
}

How can we apply the JUnit

Testing framework to test our

Snake code?

• Set up testing class

• Instantiate essential objects required

to test method(s)

• Use assertion functions to validate

boolean expression(s)

• You will get practice writing tests like

this in this and next week’s labs

o You will learn a lot more about

unit testing in CS200!!

29 / 66
Andries van Dam © 2024 10/24/24

Recap Snake Design Process

• Assignment specifications can be daunting

• Start at very high level: how to separate components of the program

o which classes can I use to model different objects in my
program?

o what functionalities can I delegate to those classes?

o how would those classes interact with each other?

o how can you test these components?

o is my design scalable?

o repeat and revise!

30 / 66
Andries van Dam © 2024 10/24/24

Intermission

• Have seen how to design mock CS15 project from scratch

o need to go through similar design discussions for the projects in
the remainder of the semester

o code for the different designs of Snake can be found on GitHub

• For remainder of lecture, will cover additional discussions around
design that will be useful in the future

https://github.com/brown-cs15-2024/snake

31 / 66
Andries van Dam © 2024 10/24/24

Overview

● Enums

● Factory Pattern

● Testing

● Interfaces v. Inheritance

● Method Overloading

32 / 66
Andries van Dam © 2024 10/24/24

Interfaces vs. Inheritance
• When deciding between interfaces and inheritance, need to consider

trade-offs between the two

o interfaces + composition offer more flexibility compared to inheritance

▪ ex. wrapper classes, like a “smart square”

o can implement several interfaces but only extend one super-class

o while inheritance allows sub-classes to inherit functionality from parent,

there’s risk of unintended consequences when overriding methods

• Note that while interfaces (coupled with composition) are often favored

over inheritance, there are use cases which can really take advantage

of inheritance, e.g., cars and animals

33 / 66
Andries van Dam © 2024 10/24/24

Case 1: Problems with Inheritance

• Let’s return to our Race example from the Inheritance lecture

• CS15Mobile, Van, and Convertible have many identical capabilities
and share a lot of the same components
o start/stop engines

• We created a Car superclass
o Car contains instances of Engine, Brake, etc.

o CS15Mobile, Van, and Convertible extend from Car

Van CS15Mobile Convertible

Car

34 / 66
Andries van Dam © 2024 10/24/24

Extending Our Design
• Assume now that we add an ElectricCar class to the program

o but ElectricCar doesn’t use the standard Engine inherited from Car

o can ElectricCar just override Car’s methods that make use of Engine?
Anything wrong with that?

▪ can do this but could be dangerous (see Appendix B)

▪ when you create a subclass of Car, its component this.engine, is hidden from you

• a parent’s private variables stay private

▪ you inherit methods that use this.engine, but their implementation is hidden

• you do not know which methods use this.engine, let alone how they do that

▪ and you still have the now useless this.engine via pseudo-inheritance

35 / 66
Andries van Dam © 2024 10/24/24

Case 2: Inheritance vs. Interfaces + Composition

• But how, if at all, are interfaces with composition any better?

o let’s consider the case below where we want to animate a clock

public class AnimateClock {
private Clock myClock;

public AnimateClock(Clock c) {
this.myClock = c;
this.setUpTimeline();

}

private void setUpTimeline() {
KeyFrame kf = new KeyFrame(Duration.seconds(1),

(ActionEvent e) ->
this.clock.tick());

// code to add kf to timeline and start timeline
}

}

36 / 66
Andries van Dam © 2024 10/24/24

Inheritance vs. Interfaces + Composition
• Will both of these solutions work if we pass in a GrandfatherClock object to

AnimateClock(…) in the previous slide? GrandfatherClock only adds a Ding
public class Clock {

public Clock () {//code elided}
public void tick() {

/* code to update time, including
delegation to HourHand’s and
MinuteHand’s move() methods */

}

}

public class GrandfatherClock extends Clock {
public GrandfatherClock () {//code elided}

@Override
public void tick() {

super.tick();
if (this.isEvenHour()) {

this.playDing();
}

}
}

public interface Clock {
public void tick();

}

public class GrandfatherClock implements Clock {
private HourHand hourHand;
private MinuteHand minuteHand;

public GrandFatherClock() {
// instantiate HourHand and MinuteHand

}

@Override
public void tick() {

this.minuteHand.move();
this.hourHand.move();
if (this.isEvenHour()) {

this.playDing();
}

}
}

37 / 66
Andries van Dam © 2024 10/24/24

Different Implementations, Same Result

• Both of these implementations result in a GrandfatherClock
animating correctly

o in solution 1, Clock is a superclass

o in solution 2, Clock is an interface

o both can be used polymorphically

• But pros and cons to each solution

38 / 66
Andries van Dam © 2024 10/24/24

Inheritance Design: Pros and Cons

Pros:

• Better code reuse
o methods are automatically

inherited in subclasses, so
no need to re-implement
functionality tick(). In this
case, tick() delegates
most of the responsibility to a
MinuteHand and HourHand
and their move() methods,
but tick() could be
arbitrarily complex

Cons:

• Less flexible
o forced to accept superclass

properties and methods, may have

to (partially) override concrete

methods, but overriding may have

unintended consequences
o you don’t know how hidden

functionality in superclass will affect

your code

o superclass can change

implementation and accidentally
affect you (see Appendix B!)

39 / 66
Andries van Dam © 2024 10/24/24

Interfaces + Composition

• Solution 2 uses a combination of an

interface and composition to

delegate functionality to a
MinuteHand and HourHand

• GrandfatherClock signs the

contract (thus has to implement
tick() functionality) but delegates

most of the responsibility to
MinuteHand and HourHand

public interface Clock {
void tick();

}

public class GrandfatherClock implements Clock {
private HourHand hourHand;
private MinuteHand minuteHand;

public GrandFatherClock() {
// instantiate HourHand and MinuteHand

}

@Override
public void tick() {

this.minuteHand.move();
this.hourHand.move();

if(this.isEvenHour()) {
this.playDing();

}
}

}

40 / 66
Andries van Dam © 2024 10/24/24

Interfaces + Composition Design Pros

• Very flexible
o we completely control GrandfatherClock, and if we want to write a

CuckooClock or DigitalClock class, it’s easier to implement that

functionality

o no overriding → no unintended consequences

• Easy to use classes written by others
o if someone else wrote MinuteHand and HourHand, you can still

delegate to it without knowing their code details

o could also easily swap them out with different component classes that

you wrote

41 / 66
Andries van Dam © 2024 10/24/24

Interfaces + Composition Design Cons

• Cons

o both inheritance and interface use composition (i.e., delegate to

other objects)

▪ with inheritance you automatically get concrete methods

from the superclass

▪ when you use composition, you must invoke the methods

you want on the objects to which you have delegated – thus

more control but more responsibility

42 / 66
Andries van Dam © 2024 10/24/24

Case 3: Multiple Interfaces

• Have seen how interfaces provide us with more flexibility because no

unintended consequences

• Interfaces offer us even more flexibility because can implement

several interfaces

o why is this useful?

• Imagine we’re making a game with the following classes

FlyingSuperhero
o fly()
o saveLives()

StrongSuperhero
o liftCars()
o saveLives()

SlimeMonster
o scareCitizens()
o oozeSlime()

Robber
o scareCitizens()
o robBank()

43 / 66
Andries van Dam © 2024 10/24/24

Interfaces vs. Inheritance

• There are some similarities in implementation

o FlyingSuperhero and StrongSuperhero both have a
saveLives() method

o SlimeMonster and Robber both have a scareCitizen()
method

o can abstract this up into superclasses!

44 / 66
Andries van Dam © 2024 10/24/24

Initial Design

Hero
saveLives()

FlyingSuperhero
fly()

StrongSuperhero
liftCars()

Villain
scareCitizens()

SlimeMonster
oozeSlime()

Robber
robBank()

45 / 66
Andries van Dam © 2024 10/24/24

Extending Our Design
• We want to add a monster who flies

o FlyingMonster
▪ fly()
▪ scareCitizens()

• Where do we fit this into our inheritance diagrams?

o it can fly, but it does not save lives → can’t use methods defined in
Hero superclass to scareCitizens()

o could extend Villain superclass so that it can use

scareCitizens(), but would need to reimplement code for fly()

46 / 66
Andries van Dam © 2024 10/24/24

Revised Design

Hero
saveLives()

FlyingSuperhero
fly()

StrongSuperhero
liftCars()

Villain
scareCitizens()

SlimeMonster
oozeSlime()

Robber
robBank()

FlyingMonster
fly()

47 / 66
Andries van Dam © 2024 10/24/24

Can we do better?

• Separate classes by their capabilities

o FlyingSuperhero: flier + lifesaver

o StrongSuperhero: carlifter + lifesaver

o SlimeMonster: slimer + scarer

o FlyingMonster: flier + scarer

o BankRobber: robber + scarer

• Inheritance: model classes based on what they are

• Interface: model classes based on what they do

o in this case, prefer interface over force-fitting inheritance

48 / 66
Andries van Dam © 2024 10/24/24

Better Design: Mix and Match Using Interfaces

Flier

Lifesaver

CarLifter

Slimer

Scarer

Flier

Scarer

Robber

Scarer

Lifesaver

FlyingSuperHero

StrongSuperHero

SlimeMonster

FlyingMonster

BankRobber

49 / 66
Andries van Dam © 2024 10/24/24

Interfaces and Our Design

• As you can see, there are a lot more classes in this design

o however, we have extreme flexibility

▪ could make a flying, strong, scary, bank robbing monster
without changing or force-fitting our new class into the current
design

▪ although you still have to implement the methods of the
interface in your new class

50 / 66
Andries van Dam © 2024 10/24/24

The Challenges of Design (1/2)
• Design a solution to a problem such that it solves the problem efficiently, but

also makes it easy to extend the solution if additional functionality is required

o only define the capabilities that you know you will need to solve the

problem at hand
• Your job in creating an interface/superclass is precisely to figure out the right

abstractions
o decision making under uncertainty – you do the best you can. And

frankly, opinions may differ on what is “the best solution”

o experience (practice) really matters

• Extensibility is important, but only to a degree

o you cannot design a program that solves every problem a user thinks of

51 / 66
Andries van Dam © 2024 10/24/24

The Challenges of Design (2/2)

• CS32 (Software Engineering) goes deeper into design decisions and

tradeoffs, as well as software engineering tools

o you can take it after you’ve completed CS0150 and CS0200!

52 / 66
Andries van Dam © 2024 10/24/24

Overview

● Enums

● Factory Pattern

● Testing

● Interfaces v. Inheritance

● Method Overloading

53 / 66
Andries van Dam © 2024 10/24/24

Method Overloading (1/3)
• Can define multiple methods of same name within a class, as long

as method signatures are different

• Method signature refers to name, number, types of parameters and

their order

• Signature does NOT include return type

• Two methods with identical signatures but different return types (and

different bodies) will yield a compiler error – why?

o compiler (and you, the reader) can’t distinguish between two

methods with the same signature and different return types when

an instance calls those methods – method name and argument

types passed in are the same! So, signature is just name and

parameter list

54 / 66
Andries van Dam © 2024 10/24/24

Method Overloading (2/3)
• Example: java.lang.Math

• static method max takes in two

numbers and returns the greater

of the two

• There are actually three max
methods– one for ints, one for

floats, one for doubles

• When you call an overloaded

method, the compiler infers

which method you mean based
on types and number of

arguments provided

/* this is an approximation of what Math’s
three max methods look like */

public class Math {
// other code elided

public static int max(int a, int b) {
// return max of two ints

}

public static float max(float a, float b) {
// return max of two floats

}

public static double max(double a, double b){
// return max of two doubles

}

}

55 / 66
Andries van Dam © 2024 10/24/24

• Be careful not to confuse overloading and overriding!

o Overriding an inherited method in a subclass: signatures and

return types must be the same

o Overloading methods within the same class: names are the same

but the rest of the signatures (i.e., the parameters) must be different so
the compiler can differentiate; the return types may also differ (see

max)

• Using same signatures and return types in different classes is

OK because the compiler can differentiate by class/type of

instance on which the method is called

Method Overloading (3/3)

56 / 66
Andries van Dam © 2024 10/24/24

Which of the following is true of a class that contains an

overloaded method? The class has…

A. Two methods that are absolutely identical

B. Two methods that are the same, except in their return type

C. Two methods that have the same name, but different

parameters

D. Two methods that are the same, except one contains an error

TopHat Question Join Code: 316062

57 / 66
Andries van Dam © 2024 10/24/24

Method Overloading: Constructors

• Even constructors can be

overloaded!

• Already seen this with JavaFX

shapes

• Can instantiate a rectangle with
any of the constructors!

Rectangle rect = new Rectangle ();
rect = new Rectangle (120, 360);
rect = new Rectangle (0, 0, 120, 120);
rect = new Rectangle (0, 0, Color.BLUE);

58 / 66
Andries van Dam © 2024 10/24/24

Method Overloading: Example

• Can call an overloaded method on other overloaded methods

public class Halloween {

public Halloween(HalloweenShop shop) {
Hat hat = shop.getHat();
this.wearCostume(hat);

}

public void wearCostume(Hat hat) {
Gown gown = hat.getMatchingGown();
this.wearCostume(hat, gown);

}

public void wearCostume(Hat hat, Gown gown) {
//code to wearCostume elided

}
//other methods elided

}

59 / 66
Andries van Dam © 2024 10/24/24

Announcements

• Snake Code on GitHub – can discuss design decisions
with other students, or TAs at hours

• DoodleJump Information

o Early handin: Monday 10/28

o On-time handin: Wednesday 10/30

o Late handin: Friday 11/01

o Check out Partner Projects Logistics Guide

o Chance for a Code Debrief after you hand in the
project! Will send more info soon!

• HTA office hours on Friday 10/25 @3pm in CIT 209

60 / 66
Andries van Dam © 2024 10/24/24

Appendix A: JUnit Testing!

61 / 66
Andries van Dam © 2024 10/24/24

JUnit Testing: Naïve Example
• Trivial example: test the following

code that adds two integers:

• What steps do we take to test?

• 1) Set up testing class

• 2) Instantiate essential objects
required to test method(s)

• 3) Use assertion functions to
validate a boolean expression

public class Calculator {
// constructor elided
public int add(int x, int y){

return x+y;
}

}

public class CalculatorTestingSuite {

@Test
public void testAddNumbers(){

Calculator calc = new Calculator();
assertTrue(calc.add(2,2) == 4);

}
}

@Test tells compiler this is a unit test

62 / 66
Andries van Dam © 2024 10/24/24

How does IntelliJ help?

• Our test(s) from the last slide look like this in IntelliJ:

Can run individual tests, or the

whole class (the “testing suite”)

with green play buttons

Pressing the top play button, gets

us the following output in IntelliJ:

63 / 66
Andries van Dam © 2024 10/24/24

Appendix B: Method Overriding!

64 / 66
Andries van Dam © 2024 10/24/24

Unintended Consequences of Overriding (1/3)

• Assume Car uses its

method revEngine()
(which uses Engine’s

rev()) inside its

definition of drive

public class Car {
private Engine engine;
private Brakes brakes;
public Car() {

this.brakes = new Brakes();
this.engine = new Engine();

}

public void revEngine() {
this.brakes.engage();
this.engine.rev();

}

public void drive() {
this.revEngine();
this.brakes.disengage();
//remaining code elided

}
}

public class Brakes {
//constructor, other code elided

public void engage() {
//code elided

}

public void disengage() {
//code elided

}
}

public class Engine {
//constructor, other code elided

public void rev() {
//code elided

}
}

65 / 66
Andries van Dam © 2024 10/24/24

• Now we override revEngine in
ElectricCar

o notice revEngine no longer calls

brakes.engage()

• Recall that drive() calls revEngine; if

you call drive() on ElectricCar, it will
call Car’s inherited drive() that uses

ElectricCar’s revEngine
implementation

public class ElectricCar extends Car {
private Battery battery;

public ElectricCar() {
super();
this.battery = new Battery();

}

@Override
public void revEngine() {

this.battery.usePower();
}

}

public class Car {
//code elided
public void drive() {

this.revEngine();
this.brakes.disengage();
//remaining code elided

}
}

Unintended Consequences of Overriding (2/3)

66 / 66
Andries van Dam © 2024 10/24/24

Unintended Consequences of Overriding (3/3)
• This could pose a problem

o drive() relies on revEngine to
engage the brakes, so that drive()
can disengage them, but you don’t

know that – hidden code

o so when ElectricCar overrides

revEngine(), it messes up drive()

o ElectricCar also has 2 engines now

▪ its own Battery and the pseudo-

inherited engine from Car

▪ also messes up its functionality

• It might be fine if you write all your own

code and know exactly how everything

works

o but usually not the case!

public class ElectricCar extends Car {
private Battery battery;
public ElectricCar () {

this.battery = new Battery();
}
@Override
public void revEngine() {

this.battery.usePower();

}
}

public class Car {
//code elided
public void revEngine() {

this.brakes.engage();
this.engine.rev();

}
public void drive() {

this.revEngine();
this.brakes.disengage();
//remaining code elided

}
}

Social Media I:
Misinformation

Topics in Socially Responsible Computing

The Social Dilemma – SRC Discussion #1

Where do you receive your news?

Social Media, Misinformation, and Echo Chambers…
● Algorithm Personalization:

○ Similar content based on past
behavior

● Selective Exposure:
○ Following accounts aligned

with existing beliefs

● Feedback Loop:
○ More engagement, more

similar content

● Filter Bubbles:
○ Limited exposure to opposing

viewpoints

The Digital Town Square…?

● Wide spectrum of opinions,
but the trend has been to
allow more “free speech”

○ Does this even lead to a so-
called free “marketplace of
ideas”?

● Balance between meaningful
political discourse and
regulating hate speech or
misinformation

● Platforms like X preach
hyper-libertarianism but ban
accounts in a non-
transparent and often-biased
way

Content
Moderation

“Free Speech”

Designing for engagement leads to greater polarization…

Viral Spread of
Extreme Views

Reinforces Polarization

Algorithms Favour
Controversy

Emotional
Content Drives

Interaction

https://sites.brown.edu/informationfutures/

Information Futures Lab @Brown

	Slide 1: Lecture 15
	Slide 2: Use of ChatGPT and other non-ATA GAI
	Slide 3: Back to Our Snake Program
	Slide 4: Overview
	Slide 5: Snake Movement (1/3)
	Slide 6: Snake Movement (2/3)
	Slide 7: Snake Movement (3/3)
	Slide 8: Introducing Enums
	Slide 9: Declaring and Defining an Enum
	Slide 10: Using Enums: Snake Movement (1/3)
	Slide 11: TopHat Question
	Slide 12: Using Enums: Snake Movement (2/3)
	Slide 13: Using Enums: Snake Movement (3/3)
	Slide 14: Introducing Enum Methods (1/3)
	Slide 15: Enum Methods (2/3)
	Slide 16: Enum Methods (3/3)
	Slide 17: TopHat Question
	Slide 18: Overview
	Slide 19: Representing the Food (1/3)
	Slide 20: Representing the Pellets (2/3)
	Slide 21: Representing the Pellets (3/3)
	Slide 22: Factory Pattern (1/2)
	Slide 23: Factory Pattern (2/2)
	Slide 24: Overview
	Slide 25: Testing Our Program (1/2)
	Slide 26: Testing Our Program (2/2)
	Slide 27: Introducing JUnit Testing
	Slide 28: JUnit Testing: Snake Example
	Slide 29: Recap Snake Design Process
	Slide 30: Intermission
	Slide 31: Overview
	Slide 32: Interfaces vs. Inheritance
	Slide 33: Case 1: Problems with Inheritance
	Slide 34: Extending Our Design
	Slide 35: Case 2: Inheritance vs. Interfaces + Composition
	Slide 36: Inheritance vs. Interfaces + Composition
	Slide 37: Different Implementations, Same Result
	Slide 38: Inheritance Design: Pros and Cons
	Slide 39: Interfaces + Composition
	Slide 40: Interfaces + Composition Design Pros
	Slide 41: Interfaces + Composition Design Cons
	Slide 42: Case 3: Multiple Interfaces
	Slide 43: Interfaces vs. Inheritance
	Slide 44: Initial Design
	Slide 45: Extending Our Design
	Slide 46: Revised Design
	Slide 47: Can we do better?
	Slide 48: Better Design: Mix and Match Using Interfaces
	Slide 49: Interfaces and Our Design
	Slide 50: The Challenges of Design (1/2)
	Slide 51: The Challenges of Design (2/2)
	Slide 52: Overview
	Slide 53: Method Overloading (1/3)
	Slide 54: Method Overloading (2/3)
	Slide 55: Method Overloading (3/3)
	Slide 56: TopHat Question
	Slide 57: Method Overloading: Constructors
	Slide 58: Method Overloading: Example
	Slide 59: Announcements
	Slide 60: Appendix A: JUnit Testing!
	Slide 61: JUnit Testing: Naïve Example
	Slide 62: How does IntelliJ help?
	Slide 63: Appendix B: Method Overriding!
	Slide 64: Unintended Consequences of Overriding (1/3)
	Slide 65: Unintended Consequences of Overriding (2/3)
	Slide 66: Unintended Consequences of Overriding (3/3)
	Slide 67: Social Media I: Misinformation
	Slide 68: The Social Dilemma – SRC Discussion #1
	Slide 69: Where do you receive your news?
	Slide 70
	Slide 71: Social Media, Misinformation, and Echo Chambers…
	Slide 72: The Digital Town Square…?
	Slide 73: Designing for engagement leads to greater polarization…
	Slide 74

