
1/59Andries van Dam © 2024 10/15/24

Lecture 12

Loops

“Life is just one damn thing after

another.”

-Mark Twain

“Life isn’t just one damn thing after

another… it’s the same damn thing

over and over and over again.”

-Edna St. Vincent Millay

2/59Andries van Dam © 2024 10/15/24

Moss Demo

3/59Andries van Dam © 2024 10/15/24

Outline

• Turtle

• Looping

• while Loops

• for Loops

• Choosing the Right Loops

4/59Andries van Dam © 2024 10/15/24

Introduction to Turtle (1/2)

• Before we see loops, we need some tools
o We will use a Turtle to help us understand loops

o Turtles are based on Seymour Papert’s Logo*, a language for

beginners, especially young kids

• Turtles are imaginary pens that when given

instructions can draw shapes for us

*LOGO is based on Piaget's Constructivist Learning Theory and was meant to teach math and programming to kids. See

LEGO Mindstorms product line, named after book by AI pioneer Seymour Papert (February 29, 1928 – July 31, 2016)
"Mindstorms: Children, Computers and Powerful Ideas“, 1980.

5/59Andries van Dam © 2024 10/15/24

● Turtles know where they are, what direction

they are facing, and how to move and turn.

● Turtles can draw lines behind them as they

move around the screen or just move without

drawing.

● PaneOrganizer holds instructions for the turtle
o reminiscent of our first Robot example…

Introduction to Turtle (2/2)

6/59Andries van Dam © 2024 10/15/24

Turtle’s

Methods

(1 of 2)

public class Turtle {
// instance variables elided

/* constructor for Turtle instantiates a Polygon
representing the Turtle graphically */

public Turtle() {
// some code here

}

/* reset turtle to center of pane */
public void home() {

// some code here
}

/* turn right a specified number of degrees */
public void right(double degrees) {

// some code here
}

/* turn left a specified number of degrees */
public void left(double degrees) {

// some code here

}

// continued

TAs have written a

Turtle class

7/59Andries van Dam © 2024 10/15/24

/* move forward a specified distance, drawing a line as the turtle

moves */
public void forward(int distance) {

// some code here
}
/* move backward a specified distance, drawing a line as the turtle
moves */
public void back(int distance) {

// some code here
}
/* move turtle to a specified position without
drawing a line */
public void setLocation(Point2D loc) {

// some code here
}
/* return turtle’s location */

public Point2D getLocation() {
// some code here

}
/* return the Polygon (the triangle) contained in Turtle class so
that we can graphically add it in the P.O.*/
public Shape getShape() {

// some code here
}

}

Turtle’s

Methods

(2 of 2)

8/59Andries van Dam © 2024 10/15/24

Drawing with Turtle (1/2)
● Need class to tell Turtle how to draw some basic shapes

o will contain a Pane and a Turtle
o will have methods for each shape we want to draw

● First, determine what shapes we want
o this lecture: square, random walk

9/59Andries van Dam © 2024 10/15/24

Drawing with Turtle (2/2)

public class PaneOrganizer {
// draws each pattern
private Turtle turtle;

private Pane root;

public PaneOrganizer() {
this.root = new Pane();
this.turtle = new Turtle();
this.root.getChildren().add(this.turtle.getShape());

}
public Pane getRoot() {

return this.root;
}
// methods for each geometric pattern to follow…

}

getShape() just

returns the triangle
contained in Turtle
class so it can be added

to the Scene Graph

Note: Because this is a very small program, our logic is in
our PaneOrganizer rather than a top-level logic class like

we do in CS15 projects

● How will we code it?
o create PaneOrganizer class

which defines methods for

drawing each shape

o PaneOrganizer also

instantiates the root Pane that

the Turtle will draw on and

contains the Turtle. The root

is returned in getRoot()
o Turtle is a wrapper class

that contains a polygon (a

triangle) and defines methods

for how the Turtle will move;

it can also return its polygon

as a node via getShape()

10/59Andries van Dam © 2024 10/15/24

A Repetitive Solution (1/2)

● Let’s write drawSquare method in the PaneOrganizer class

● Brute force: write line of code for each side of the square

public void drawSquare(int sideLen) {
this.turtle.forward(sideLen);
this.turtle.right(90);
this.turtle.forward(sideLen);
this.turtle.right(90);
this.turtle.forward(sideLen);
this.turtle.right(90);
this.turtle.forward(sideLen);
this.turtle.right(90);

}

11/59Andries van Dam © 2024 10/15/24

● What if we wanted to make a more general method that

handles regular shapes such as pentagons or octagons?
o need to call forward() and right() for each side

o cannot determine in advance how many sides we need in generic

method
o note that we’re using the Turtle’s primitive methods to generate

higher-level shapes that are normally already defined in JavaFX

● There must be an easier way!

A Repetitive Solution (2/2)

12/59Andries van Dam © 2024 10/15/24

Outline
• Turtle

• Looping

• while Loops

• for Loops

• Choosing the Right Loops

13/59Andries van Dam © 2024 10/15/24

Looping (1/2)

● Execute a section of code repeatedly

o uses booleans (true and false) as loop conditions; continues

looping as long as condition is true, but when boolean is false,

loop condition equals exit condition and loop is terminated

o as with conditionals, code in loop can be a single line or many

lines enclosed in curly braces

o section of code executed is called loop’s body

14/59Andries van Dam © 2024 10/15/24

Looping (2/2)
● Three loop structures in Java

o while loop

o do while loop

o for loop

● Differ in relation between body and loop condition,

as well as length of execution

● Let’s look at while loop first

15/59Andries van Dam © 2024 10/15/24

Outline
• Turtle

• Looping

• while Loops

• for Loops

• Choosing the Right Loops

16/59Andries van Dam © 2024 10/15/24

The while loop (1/2)

● Executes while stated condition is true

o tests loop condition before executing body

o if loop condition is false first time through, body is not

executed at all

while (<loop condition>) {

<loop body>

}

17/59Andries van Dam © 2024 10/15/24

The while loop (2/2)
● Examples of loop conditions:

numClasses < 6

peopleStanding <= maxPeople

this.checkAmount() <= acctBalance

this.isSquare() //predicate, a method that returns a boolean

● Follows the same rules as conditions for if-else statements

● Multiple conditions can be combined using logical operators
(and (&&), or (||), not (!))

(numClasses >= 3) && (numClasses <=5)

(peopleStanding <= maxPeople) || (maxPeople < 50)

18/59Andries van Dam © 2024 10/15/24

while loop Flowchart (1/2)

● while loops continue

while the loop
condition is true

● <loop condition>
can be any Boolean

expression

<previous statement>

<rest of program>

<loop body>
Is <loop

condition> true? Yes

No

19/59Andries van Dam © 2024 10/15/24

while loop Flowchart (2/2)

● while loops continue

while the loop
condition is true

● <loop condition>
can be any Boolean

expression

Walk into the Ratty.

Go to Jo’s.

Get more food.
Is The Ratty

open?
Yes

No

20/59Andries van Dam © 2024 10/15/24

All Flow of Control Structures: 1-in, 1-out

● Different from “spaghetti” code

(unorganized and difficult to maintain

code) with goto methods to allow program

to jump to an arbitrary line of code

o Go To Statement Considered Harmful

letter by Edsger Dijkstra, CACM, 1968

o if-else, etc., are “structured flow-of-

control”: one-in, one-out

● Benefits of predictable flow of control:
o much easier debugging

o compiler can optimize much better

<rest of program>

<previous statement>

Flow of Control

Structure

One way in

One way out

21/59Andries van Dam © 2024 10/15/24

So, just how bad is goto?

Source: https://xkcd.com/292/ (XKCD, A Webcomic of Romance, Sarcasm, Math, and Language)

https://xkcd.com/292/

22/59Andries van Dam © 2024 10/15/24

Syntax: Random Walk Using while
● Method in PaneOrganizer class:

o draws random lines while this.turtle is within its

pane

● On last step of walk, turtle will move forward out of pane

o the line is clipped by JavaFX since we don’t explicitly tell it to

wrap around

o no point in continuing to walk outside the pane

public void randomWalk() {

// while this.turtle’s position is inside its pane, move this.turtle randomly

// this.turtle's initial location set to (0,0)

while (this.root.contains(this.turtle.getLocation())) {

this.turtle.forward((int) (Math.random()*15)); // cast to [0-14]

this.turtle.right((int) (Math.random()*360)); //cast to [0-359]

}

}

23/59Andries van Dam © 2024 10/15/24

TopHat Question 1
What is the value of tempSum after this while loop is terminated?

int tempSum = 0;

while(tempSum < 10) {

tempSum += 3;

}

A. 10

B. 9

C. 12

D. The loop will never terminate

Join Code: 316062

24/59Andries van Dam © 2024 10/15/24

The do while Loop

● do while always

executes loop body at

least once by switching

order of test and body

● <loop condition> is

Boolean expression

<previous statement>

<rest of program>

<loop body>

Is <loop

condition> true? Yes

No

25/59Andries van Dam © 2024 10/15/24

Example: Another Random Walk

● Method of PaneOrganizer class:
o draws random lines while turtle is within pane

o this.turtle starts in center of root pane, so first step

guaranteed to be within pane

public void centeredRandomWalk() {

// moves turtle to pane’s center

this.turtle.home();

// moves turtle randomly within pane

do {

this.turtle.forward((int)(Math.random()*15));

this.turtle.right((int)(Math.random()*360));

} while (this.root.contains(this.turtle.getLocation()));

}

Note the semicolon at the

end of while statement

26/59Andries van Dam © 2024 10/15/24

do while vs. while (1/2)

● In both loops:

o stops executing body if loop condition is false

o must make sure loop condition becomes false by

some computations to avoid an “infinite loop”

o infinite loop means your loop condition will never
turn false – i.e., exit condition never occurs (and

your program “freezes up”!)

27/59Andries van Dam © 2024 10/15/24

● do while
o body always executes

at least once

o loop condition tested

at bottom of loop body

● while
o body may not execute at all

o loop condition tested before

body; loop condition variables

must be set before loop entry

o useful for screening bad data

that might cause statements

within loop to fail

(e.g. while (ref != null))

do while vs. while (2/2)

28/59Andries van Dam © 2024 10/15/24

TopHat Question 2
What’s the difference between these two loops?

Loop 1:

while(andyIsAway()) {

this.tas.takeADayOff();

}

A. In the second loop, the condition is tested before the body

B. In the second loop, the TAs always take at least 1 day off

C. In the first loop, the body is executed before the condition is tested.

D. There is no difference between the two loops

Loop 2:

do {

this.tas.takeADayOff();
} while (andyIsAway());

Join Code: 316062

29/59Andries van Dam © 2024 10/15/24

Outline
• Turtle

• Looping

• while Loops

• for Loops

• Choosing the Right Loops

30/59Andries van Dam © 2024 10/15/24

for loops (1/4)
● Most specialized loop construct (and the first high-level,

goto-less loop in FORTRAN): typically used to execute

loop body a predetermined number of times

o while and do while loops can execute body for undetermined

number of times; based on boolean

for (<init-expr>; <loop condition>; <update>) {

<loop body>

}

● This is the syntax for a for loop:

31/59Andries van Dam © 2024 10/15/24

for loops (2/4)

for (<init-expr>; <loop condition>; <update>) {

<loop body>

}

● <init-expr>
o expression for setting initial value of loop counter (traditionally use

single char. identifier; e.g., int i = 0); also called loop index

o executed at start of loop code, only once, not for each time

through the loop

32/59Andries van Dam © 2024 10/15/24

for loops (3/4)

● <loop condition>
o true or false
o test involves loop counter to determine if loop should execute

(e.g. i < 5)
o checked at start of every loop (including the first)

for (<init-expr>; <loop condition>; <update>) {

<loop body>

}

33/59Andries van Dam © 2024 10/15/24

for loops (4/4)

● <update>
o expression that modifies loop counter

o executed at end of every <loop body>, just before returning to

the top of the loop

o (e.g. i++) this would increase the loop counter by 1 each loop

for (<init-expr>; <loop condition>; <update>) {

<loop body>

}

34/59Andries van Dam © 2024 10/15/24

drawSquare Revisited

● Better way of drawing square rather

than explicitly drawing each side:

public void drawSquare(int sideLen) {

/* start with integer i initialized to 0;

execute as long as i < 4; each execution

increments i by 1 at the bottom of the loop */

for (int i = 0; i < 4; i++) {

this.turtle.forward(sideLen);

this.turtle.right(90);

}

}

35/59Andries van Dam © 2024 10/15/24

for Flowchart

● for loop has four parts

o initialize value of counter

o test loop condition

o loop body

o update counter

<init-counter>

<rest of program>

<loop body>
Is <loop

condition> true? Yes

No

<update-counter>

<previous statement>

36/59Andries van Dam © 2024 10/15/24

for Flowchart
Go to SciLi first floor

Go home

“Read a book”Is floor less

than 15?
Yes

No

Go up one floor

Note: For this example, we use the old

SciLi, where every floor had books!

Student student = new Student(“Sarah”);

student.goToSciLi();

for (int floor = 1; floor < 15; floor++){

student.readBook(); //read a new book

}

student.goHome();

Get out of class

● We can use an example of a

student reading books on
different floors of the SciLi.

37/59Andries van Dam © 2024 10/15/24

Outline
• Turtle

• Looping

• while Loops

• for Loops

• Choosing the Right Loops

38/59Andries van Dam © 2024 10/15/24

Choosing the Right Loop (1/2)

● for loop is called a definite loop because you can

typically predict how many times it will loop

● while and do while loops are indefinite loops, as you

do not know when they will end

● for loop is typically used for math-related loops like

counting finite sums and sequentially looping through

elements of an array (Thursday’s Lecture)

39/59Andries van Dam © 2024 10/15/24

Choosing the Right Loop (2/2)

● while loop is good for situations where boolean condition

could turn false at any time

● do while loop is used in same type of situation as while
loop, but when code should execute at least once

● When more than one type of loop will solve problem, use
the cleanest, simplest one.

40/59Andries van Dam © 2024 10/15/24

TopHat Question 3

What is the value of sum at the end of the following loop?

sum = 0;

for (int i = 0; i <= 10; i+=2) {

sum++;

}

A. 10 B. 11 C. 5 D. 6

Join Code: 316062

41/59Andries van Dam © 2024 10/15/24

Syntax: Nested Loops
● Loops, just like if statements, can be nested!

● Example: drawFilledSquare
public void drawFilledSquare(int sideLen) {

// fill in concentric squares

for (int i = 0; i < (sideLen/2); i++) {

for (int j = 0; j < 4; j++) {

this.turtle.forward(sideLen – (2*i));

this.turtle.right(90);

}

/* note we can use loop counter R/O (read-only)

in body but never reset it there! */

// position turtle for next iteration

this.turtle.right(90);

this.turtle.forward(1);

this.turtle.left(90);

this.turtle.forward(1);

}

}

● What does this do?
o decrementing sideLen by 2

each iteration to guarantee

that each “inner square”

drawn in the inner loop is

exactly one unit away on

either side from square

immediately “outside” of it

(hence, one + one = two)

42/59Andries van Dam © 2024 10/15/24

Syntax for Nested Loops Explained

● What is the outer loop doing?
o first draws outer square

Turtle starts upright!

drawFilledSquare draws concentric

squares; each individual square is

drawn using the nested loop

Rotate 90 degrees right!

Move forward 1 unit!

Rotate 90 degrees left!

Move forward 1 unit!

Note: Diagram is misleading in that lines should be a pixel unit wide so the filled square will look solid

● Turtle is represented by

Draw inner square

43/59Andries van Dam © 2024 10/15/24

Looping to Make a Filled-in Design(1/2)

• 3D Printing Food!!

https://www.youtube.com/watch?v=ISXqC-YPnpc

44/59Andries van Dam © 2024 10/15/24

Looping to Make a Filled-in Design (2/2)

• 3D Printed House

45/59Andries van Dam © 2024 10/15/24

Decrementing Counter
● We can count backwards in our loop too

o just change the counter update expression

o in fact, we can update however we want

● for loops end in one of two ways
o when counter value equals limit (for < or >)

o when counter value “goes past” limit (for <= or >=)

o thus, countDownSeconds() would also print 0 if used i >= 0
o beware of such “off-by-one” errors! → hand simulation really helps!

public void countDownSeconds(){

/*change counter to decrement, and change the loop condition accordingly */

for(int i = 5; i > 0; i--){

System.out.print(i);

}

}

Output:
54321

46/59Andries van Dam © 2024 10/15/24

break

● break causes immediate exit from a flow-of-control structure

(e.g., switch, while, do while, for)

● Example:
for (int i = 0; i < 10; i++){

if (this.cookieJar.getNumberOfCookies() == 0) {

break; //If there are no cookies left, we should break out of the loop!

}

this.eatACookie();

}

//Execution continues here after loop is done or after break statement is executed

● Execution continues with first line of code after structure

● There are other ways to do this loop…

47/59Andries van Dam © 2024 10/15/24

continue
● When used in while, for, or do while structures,

continue skips remaining statements in body of that

structure and proceeds with next iteration of loop

o useful if there is list of data that you are looping over and you

want to skip processing of data that is somehow “not legal”

● In while and do while structures, execution continues

by evaluating loop-continuation condition

● In for structure, execution continues by incrementing

counter and then evaluating loop condition

48/59Andries van Dam © 2024 10/15/24

continue Example

/* We oversee letting kids on a rollercoaster ride if they are

tall enough */

for (int i = 0; i < 20; i++) {

if(!ride.kidIsTallEnough(i)) {

// if the kid at i is not tall enough

// skip to the next iteration (the next kid in line)

continue;

}

// only do this if the kid is tall enough

this.rideRollercoaster(ride.getKid(i)); // let kid onto ride

}

// more code here

49/59Andries van Dam © 2024 10/15/24

Boolean Predicates and Flags

• A Boolean predicate is a method that returns a boolean

(e.g., isLeft(), isAvailable(), kidIsTallEnough(i))

• A Boolean flag records the result of a predicate; set and

saved in one place, used later in different place

● Example (implementing a for loop, using while):

boolean isDone = false;

int i = 0;

while (!isDone) {

i++;

if (i == 5) {

isDone = true;

}

}

Note: Here, the Boolean flag is set within

loop, which, though legal, is not practical.

50/59Andries van Dam © 2024 10/15/24

TopHat Question 4

In the loop to the right,

what is the value of i

upon exit?

A. 4

B. 5

C. 6

D. Infinite loop

boolean isDone = false;
int i = 0;
while (!isDone){

i++;
if(i == 5){

isDone = true;
}

}

Join Code: 316062

51/59Andries van Dam © 2024 10/15/24

Empty Intervals

● Example scenario: we want to keep a running sum of a

sequence of numbers

● What happens if we try to add integers in this loop?

public int sum() {

int tempSum = 0;

for (int i = 1; i < 1; i++) {

tempSum += i;

}

return tempSum;

}

● Answer: body of loop

is not executed

● Why?
o loop condition is false

for initial counter value

52/59Andries van Dam © 2024 10/15/24

Correct Example

/*This method sums all numbers from 1

up to and including 10 */

public int sum() {

int tempSum = 0;

for (int i = 1; i <= 10; i++){

tempSum += i;

}

return tempSum;

}

● What about this loop?

● It will work!

53/59Andries van Dam © 2024 10/15/24

Off-by-one Errors
● These errors occur when loop executes one too many

or one too few times

o example: add even integers from 2 to some number, inclusive

count = 2;

result = 0;

while (count < number) {

result += count;

count += 2;

}

o should be:
while (count <= number) {

//loop body elided

}

Produces incorrect result if number
is assigned an even value. Values
from 2 to number-2 will be added

(i.e., number is excluded)

Now, value of number is

included in summation

54/59Andries van Dam © 2024 10/15/24

Syntax: Other Loop Errors (1/2)

● Make sure test variables have proper values before

loop is entered

● Make sure tests check proper conditions
for (int i = 1; i != 100; i += 2) {

// do something here

}

/* Will we ever get here? */

int product = 0;

while (product < 100) {

product = 2;

}

/* What will happen here? */

*

55/59Andries van Dam © 2024 10/15/24

TopHat Question 5

int num = 2024;

do {

num--;

} while (num < 2024);

Given the following code:

What do you expect will happen?

A. Loop will never end
B. Loop will run 2024 times (until num is 0), then end

C. Loop will run only once

Join Code: 316062

56/59Andries van Dam © 2024 10/15/24

Syntax: Other Loop Errors (2/2)

● ALWAYS HAND SIMULATE first, last, and typical cases in

a loop to avoid off-by-one or infinite loop errors

o the first and last cases of a loop’s execution are called boundary

conditions or edge cases or corner cases

o hand simulation doesn’t just apply to loops – use it for everything!

Trust us – it saves debugging time!

57/59Andries van Dam © 2024 10/15/24

Which loop to use?

● You want to stack 17 blocks

● Your job is to stand at the end

of the bowling alley and pick

up all the pins, one by one,

that have been knocked over

● Sleep until your clock reads

7:51AM or later

58/59Andries van Dam © 2024 10/15/24

Announcements (1/2)

• Buy a T-Shirt!

• Cartoon Deadlines

o Early due Thursday 10/17

o On-time due Saturday 10/19

o Late due Monday 10/21

• Lab 5 – GitHub and Debugging this week

• don’t forget to finish Cartoon Mini-Assignment before lab

• Fill out Doodle Jump partner project form

59/59Andries van Dam © 2024 10/15/24

Announcements (2/2)

• Information about Fruit Ninja Code Debriefs tomorrow!

• Fill out Mid-Semester feedback form in lab this week

• helpful for us to hear your thoughts on the course

• Fill out ATA feedback form in lab this week

• helpful for us and the ATA team to continue improving

Sustainability in Tech +
Techno-solutionism

Topics in Socially Responsible Computing

Sustainable Energy Usage Efforts

Google: Commits to operating on carbon-free energy 24/7 by 2030, including data
centers and campuses worldwide

Microsoft: Aims to be carbon negative by 2030, removing all historical carbon
emissions by 2050, and investing in carbon removal technologies

Amazon: Pledges to reach net-zero carbon by 2040 and is investing in renewable
energy projects to power its operations.

Apple: Strives to reduce emissions by 75% by 2030 and 90% by 2050, compared
with the 2015 fiscal year

Sustainable Energy Usage Efforts

How realistic are these goals?

What strategies will they use to meet their goals?

Could these goals result in unforeseen consequences?

How can these companies be held accountable?

Government Regulation
Regulatory frameworks are crucial in driving and enforcing sustainable practices across
industries

Government Regulation
Regulatory frameworks are crucial in driving and enforcing sustainable practices across
industries

Government Regulation
Regulatory frameworks are crucial in driving and enforcing sustainable practices across
industries

Government Regulation
Regulatory frameworks are crucial in driving and enforcing sustainable practices across
industries

Government Regulation
Regulatory frameworks are crucial in driving and enforcing sustainable practices across
industries

Government Regulation
Regulatory frameworks are crucial in driving and enforcing sustainable practices across
industries

Climate Tech
Can we help address climate change with innovative technology?

https://www.ctvc.co/19b-2022-midyear-update/

Energy
Clean power generation

DERs
Hydrogen

Energy Storage
Grid management

Food & Land Use

Alternative proteins
Regenerative agriculture

Sustainable fertilizers
Nature restoration

Food waste

Built
Environment

Building materials
Heating and cooling

Energy efficiency
Construction

Carbon

Carbon removal and storage
Carbon utilization

Point-source carbon capture
Carbon offsets

MRV and ratings

Climate
Mitigation

Earth observation
Climate risk

Emissions tracking
Emissions accounting

ESG investing and fintech

Industrial

Steel, cement, chemicals
Efficient manufacturing

Metals and mining
Circular economy

Waste and recycling

Transportation

Electric vehicles
Batteries

Micromobility
Zero-emission aviation + shipping

Low-carbon fuels

Techno-solutionism:
“Recasting all complex
social situations…as
neatly defined problems
with definite, computable
solutions” -Morozov, 2013

The Dangers of Techno-Solutionism

Over-Reliance Unintended Consequences

Greenwashing Resource Intensity

Be a pragmatic techno-
optimist!

Sources and Further Reading

Book- The One Device: The Secret History of the iPhone by Brian Merchant

Book- To Save Everything, Click Here by Evgeny Morozov

What's in a number? The meaning of the 1.5-C climate threshold

The EU Is Taking on Big Tech. It May Be Outmatched | WIRED

Salesforce Calls for AI Emissions Regulations - WSJ

Leading the Way: California's Trailblazing Efforts to Fight Climate Change

The United States Officially Rejoins the Paris Agreement

Trump would withdraw US from Paris climate treaty again - POLITICO

Climate funding abides in $19B 2022 midyear update

Google, Amazon and the problem with Big Tech's climate claims | MIT Tech Review

https://www.climate.gov/news-features/features/whats-number-meaning-15-c-climate-threshold
https://www.wired.com/story/european-commission-big-tech-regulation-outlook/
https://www.wsj.com/articles/salesforce-calls-for-ai-emissions-regulations-as-concerns-grow-over-tech-sectors-carbon-footprint-dc9c016f
https://earth.org/leading-the-way-californias-trailblazing-efforts-in-the-fight-against-climate-change/
https://www.state.gov/the-united-states-officially-rejoins-the-paris-agreement/
https://www.politico.com/news/2024/06/28/trump-paris-climate-treaty-withdrawal-again-00165903
https://www.ctvc.co/19b-2022-midyear-update/
https://www.technologyreview.com/2024/07/17/1095019/google-amazon-and-the-problem-with-big-techs-climate-claims/

	Slide 1: Lecture 12
	Slide 2: Moss Demo
	Slide 3: Outline
	Slide 4: Introduction to Turtle (1/2)
	Slide 5: Introduction to Turtle (2/2)
	Slide 6: Turtle’s Methods (1 of 2)
	Slide 7
	Slide 8: Drawing with Turtle (1/2)
	Slide 9: Drawing with Turtle (2/2)
	Slide 10: A Repetitive Solution (1/2)
	Slide 11
	Slide 12: Outline
	Slide 13: Looping (1/2)
	Slide 14: Looping (2/2)
	Slide 15: Outline
	Slide 16: The while loop (1/2)
	Slide 17: The while loop (2/2)
	Slide 18: while loop Flowchart (1/2)
	Slide 19: while loop Flowchart (2/2)
	Slide 20: All Flow of Control Structures: 1-in, 1-out
	Slide 21: So, just how bad is goto?
	Slide 22: Syntax: Random Walk Using while
	Slide 23: TopHat Question 1
	Slide 24: The do while Loop
	Slide 25: Example: Another Random Walk
	Slide 26: do while vs. while (1/2)
	Slide 27: do while vs. while (2/2)
	Slide 28: TopHat Question 2
	Slide 29: Outline
	Slide 30: for loops (1/4)
	Slide 31: for loops (2/4)
	Slide 32: for loops (3/4)
	Slide 33: for loops (4/4)
	Slide 34: drawSquare Revisited
	Slide 35: for Flowchart
	Slide 36: for Flowchart
	Slide 37: Outline
	Slide 38: Choosing the Right Loop (1/2)
	Slide 39: Choosing the Right Loop (2/2)
	Slide 40: TopHat Question 3
	Slide 41: Syntax: Nested Loops
	Slide 42: Syntax for Nested Loops Explained
	Slide 43: Looping to Make a Filled-in Design(1/2)
	Slide 44: Looping to Make a Filled-in Design (2/2)
	Slide 45: Decrementing Counter
	Slide 46: break
	Slide 47: continue
	Slide 48: continue Example
	Slide 49: Boolean Predicates and Flags
	Slide 50: TopHat Question 4
	Slide 51: Empty Intervals
	Slide 52: Correct Example
	Slide 53: Off-by-one Errors
	Slide 54: Syntax: Other Loop Errors (1/2)
	Slide 55: TopHat Question 5
	Slide 56: Syntax: Other Loop Errors (2/2)
	Slide 57: Which loop to use?
	Slide 58: Announcements (1/2)
	Slide 59: Announcements (2/2)
	Slide 60: Sustainability in Tech + Techno-solutionism
	Slide 61: Sustainable Energy Usage Efforts
	Slide 62: Sustainable Energy Usage Efforts
	Slide 63: Government Regulation
	Slide 64: Government Regulation
	Slide 65: Government Regulation
	Slide 66: Government Regulation
	Slide 67: Government Regulation
	Slide 68: Government Regulation
	Slide 69: Climate Tech
	Slide 70: Techno-solutionism: “Recasting all complex social situations…as neatly defined problems with definite, computable solutions” -Morozov, 2013
	Slide 71: The Dangers of Techno-Solutionism
	Slide 72: Be a pragmatic techno-optimist!
	Slide 73: Sources and Further Reading

