
CS6 
Practical
System
Skills
Fall 2019 edition
Leonhard Spiegelberg
lspiegel@cs.brown.edu



11 
CS6 Practical System Skills
Fall 2019
Leonhard Spiegelberg lspiegel@cs.brown.edu



A regular expression is a string search pattern.

Regular expressions (short regex) enable you to do the following:

1. test whether a string matches a pattern

2. replace substrings matching a pattern in a string 

3. find the position of or extract a substring which matches a 

pattern

3 / 55 



Where are regular expressions used?

⇒ text editors to search for text

⇒ validation (e.g., webforms)

⇒ data extraction/manipulation

4 / 55 



grep = global regex print

grep [OPTIONS] PATTERN [FILE…]

⇒ prints lines matching a pattern, i.e. grep goes over each line of 

a file (or stdin when - is specified) and prints the line if the pattern 

is found within the line

5 / 55 



⇒ the easiest regular expression which we can write is just made 
up of regular [a-zA-Z0-9] characters (i.e. abc and numbers).

⇒ grep searches whether pattern is contained within each line and 
prints the line then out!

6 / 55 

grep world example.txt grep a example.txt grep "a classical" example.txt

world is a classical
first program
in any language!

is a classical

hello
world
is a classical
first program
to write
in any language!

example.txt

Examples:

⇒ matching part of line in red here, lines which contain pattern are printed using grep



⇒ grep has exit status 0 if at least one match was found, 1 else

⇒ -o or --only-matching to print only the matching part of a line

⇒ -q or --quiet to not display lines

Example:

echo "some string" | grep elephant -; echo $? 
1

echo "some string" | grep -q string -; echo $?
0

7 / 55 

no output 
here, 

because no 
match

no output here, because 
suppressed via -q



grep -o program example.txt
program

grep -o an example.txt
an
an

8 / 55 

hello
world
is a classical
first program
to write
in any language!

example.txt

each match 
printed on 

separate line



⇒ regular expressions can be written in their own, specific mini-language

→ defacto there are multiple ways to specify regular expressions, in

           CS6 we'll learn POSIX BRE (Basic Regular Expressions) and

           POSIX ERE (Extended Regular Expressions) syntax.

→ PCRE (Perl compliant regular expressions) is a superset

           of POSIX BRE/ERE. 

9 / 55 



⇒ first: basic regular expressions (BRE)

⇒ special characters are [ ] \ ^ $ . * 

⇒ to escape them use \, i.e. \. to have . instead of special character .

10 / 55 



Quantifiers:

⇒ a quantifier after an item specifies how often the item may occur

* preceding item may occur 0 or more times

\{m\} preceding item must occur exactly m times.

\{m,n\} preceding item must occur at least m times,
but no more than n times.

11 / 55 



12 / 55 

Regex Matches Does not match

ab*c
ac, zabc, abbc, abbbc, 

abbbbbc
ab, xyz

ab\{2\}c abbc, aabbcc abc, ab, ac

ab\{2,3\}c abbc, abbbc, aabbbcc abc, abbbbc

How to test a regex?

⇒ use grep pattern <(echo test_string) 

⇒ quote pattern when special chars are used!

⇒ use -x to match against the entire string (i.e. no substring search)



⇒ use . to match an arbitrary character

⇒ [...] can be used to specify a character class, i.e. match one 
of the characters within the square brackets

⇒ if the first char within [...] is ^, this inverts the character class. 
I.e. match any character that is not contained within [...]

⇒ ranges [a-z] available like for UNIX wildcards

⇒ character classes can be combined with quantifiers!

13 / 55 



⇒ can be only used within square brackets, e.g. [[:upper:]]
⇒ shortcut syntax with backslash might be used like a regular character

class shortcut [...] meaning

[:alnum:] [A-Za-z0-9] Alphanumeric characters

\w [A-Za-z0-9_] word, i.e. alphanumeric characters + "_"

\W [^A-Za-z0-9_] non-word characters

[:alpha:] \a [A-Za-z] alphabetic characters

[:digit:] \d [0-9] digits

\D [^0-9] non-digits

[:space:] \s [ \t\r\n\v\f] whitespace characters

\S [^ \t\r\n\v\f] non-whitespace characters

to use shortcuts under 
Linux use -P to put in 

PCRE mode

https://en.wikipedia.org/wiki/%5Ct
https://en.wikipedia.org/wiki/%5Cr
https://en.wikipedia.org/wiki/%5Cn
https://en.wikipedia.org/wiki/%5Cv
https://en.wikipedia.org/wiki/%5Cf
https://en.wikipedia.org/wiki/%5Ct
https://en.wikipedia.org/wiki/%5Cr
https://en.wikipedia.org/wiki/%5Cn
https://en.wikipedia.org/wiki/%5Cv
https://en.wikipedia.org/wiki/%5Cf


⇒ there are many more predefined character classes, e.g.

15 / 55 

[:blank:] [ \t] space and tab

[:graph:] [\x21-\x7E] printable characters + space

[:punct:]

escaped versions of

!"#$%&'()*+,./:;<=>?@\^_
`{|}~-

punctuation characters

[:lower:] [a-z] lowercase letters

[:upper:] [A-Z] uppercase letters

[:xdigit:] [A-Fa-f0-9] hexadecimal digit

⇒ depending on shell + operating system, sometimes even more classes available!



16 / 55 

Regex Matches Does not match

[Gg]r[ae]y Gray, grey, gray, Grey great, grray

a.c abc, aaxcc cba, ab, ac

[^xyz]* abbc, abbbc, aabbbcc xyz, abbxbbc

⇒ a more complex regular expression using character classes is e.g.

ISBN 

[[:digit:]]\{3\}-[[:digit:]]-[[:digit:]]\{2\}-[[:digit:]]\{6\}-[[:digit:]]

to match an ISBN numbers of the form

ISBN 978-2-98-123456-0



⇒ a\? matches “a” zero or one time. I.e. makes a optional, short 
for a\{0,1\}

⇒ a\+ matches “a” one or more times. I.e. match a at least once, 
short for aa* (or a*a)

17 / 55 



⇒ pattern1\|pattern2 to match either pattern before \| or after
    Example: abc\|def matches abc, def, adef but not bcd.

⇒ or operator, also known as choice.

Example: course numbers

CS[[:digit:]]\{3\}\|CSCI[[:digit:]]\{4\}

18 / 55 



⇒ ^ matches starting position within the string (i.e. after CRLF)

⇒ $ matches end position of string (i.e. before CRLF)

→  Note: vim uses ^ and $ as well to jump to first/last non
      whitespace character of a line!

Example:

^hello matches hello world  but not Tux says hello!

⇒ grep -x basically adds ^ as prefix, $ as suffix

19 / 55 

CRLF stands for carriage return (\r) line feed (\n). 
Basically means a newline token.



⇒ BRE supports marked subexpression defined via \(...\)

→ Also called block or capturing group

⇒ \1, …, \9 can be used to refer to the first, …, ninth capturing 
group. (Sometimes support for more capturing groups). Numbering 
from outside, left to right.

20 / 55 



^o\(aa*xbb*\)*x\(aa*xbb*\)

21 / 55 

Matches:

oxaxb

oaaaaaaxbxaaaxbbbb

oxaaaaaxbb

oaxbxaaxbbxaxbcdefghij (via grep)

Does not match:

axb (o,x missing)

aoxaxb (does not start with o)



US phone numbers with optional +1-:

\(+1-\)\+[[:digit:]]\{3\}-[[:digit:]]\{3\}-[[:digit:]]\{4\}

referencing capturing groups:

^\(aa*\)-\1-\1$ matches a-a-a, aa-aa-aa, aaa-aaa-aaa

but not a-aa-aaa or aaa-a-a. 

⇒ i.e. \1 references the substring captured by the

    first group to appear again.

⇒ If we removed ^ and $, then aa-a-a, aa-a-aa would be matched.

22 / 55 





⇒ weird to have to escape (, { to get special meaning

→ in ERE mode, no need to write \ before (, {, +, ?, |

→ E.g. use (...) to specify subexpression and {m,n} 

          to specify min/max repeats. (Escape via \(,\),\{,\})

⇒ to use grep with ERE either run grep -E or egrep

⇒ egrep has no support for referencing subexpressions via \1,...\9

24 / 55 



25 / 55 

ERE BRE

^o\(aa*xbb*\)*x\(aa*xbb*\) ^o\(aa*xbb*\)*x\(aa*xbb*\)

a? a\?

\(a\+b*\)\{1,3\} (a+b*){1,3}

⇒ your choice whether to use grep or egrep. 



⇒ depending whether you have BSD or GNU/Linux there are some 
extensions available.

⇒ to use shortcuts for character classes, i.e. \d instead of 
[[:digit:]], under GNU/Linux use grep -P pattern file. 
Special characters like (, {, … are treated like in ERE mode.

→ defacto puts grep into PCRE mode
           (perl compatible regular expressions)

26 / 55 





28 / 55 

⇒ you can use regular expressions in VIM to quickly search for lines

⇒ type / and enter a regular expression (in BRE mode),
    then press Enter and use n to iterate over the results
    Example:
    curl https://cs.brown.edu/courses/cs0060/lectures.html | vim -

⇒ also possible to use it for replacement
    :s/pattern/string/g replace pattern with string in the current line
    :%s/pattern/string/g replace pattern with string in all lines
    :s/pattern/string/gc same as :s/.../../g, but ask for confirmation

https://cs.brown.edu/courses/cs0060/lectures.html




regular expressions are closely related to finite state automata. For 
each regular expression a finite state automaton can be created.

30 / 55 

Example: a+(b|c)d{2}
⇒ Tool to visualize:
     https://www.debuggex.com/

⇒ Theory of Computation CS101 covers this in depth!

https://www.debuggex.com/


⇒ Websites which host regular expressions, e.g. regexlib.com
    Word of advice: Do not blindly copy & use regular expressions
    unless you clearly understand them!

⇒ Tip: use a website to develop your regular expression.
    Start easy and add features based on test cases.

→ regex101.com
→ regexr.com

⇒ if things fail, try to debug regular expression using
    debuggex, regex101.com ,... (think of finite state automaton)

31 / 55 



⇒ Though similar, they're two different languages

32 / 55 

Symbol Regex UNIX (path) wildcards

*
quantifier, match preceding 

character 0 to n times 
match any character 0 to n 

times

?
quantifier, match preceding 

character optionally
match exactly one arbitrary 

character

. arbitrary character dot character .

⇒ wildcards are semantically a subset of regular expressions.

    Regular expressions are more powerful than (simple) wildcards!



sed
awk



34 / 55 

sed = streaming editor

awk = named after Alfred Aho, Peter Weinberger & Brian Kernighan.

⇒ both provide a domain specific language (DSL) for 
    processing text data.

⇒ awk is a very powerful tool with a fully fledged programming language. 
    There even exist dedicated books to explain how the awk language works.



⇒ non-interactive stream-oriented text processor, typically used as 
filter in a pipeline

⇒ sed (like awk) reads input stream (stdin, file) line by line, applies 
specified operations and outputs modified line.

⇒ Basic usage: sed cmd file or sed cmd

⇒ sed provides ~25 different commands, separate multiple 
commands using ;

35 / 55 



⇒ sed allows to search for a pattern and substitute it with a string. 
When it finds the pattern, it performs the action and repeats.

Syntax:

sed 's/pattern/string/g'

36 / 55 

s for substitute 
action

pattern to 
substitute

string to use for pattern 
replacement

modifier, specify how to 
perform action

⇒ use g as modifier to replace all occurrences, 1 to replace the first,
    2 to replace the second, 3 the third, …
⇒ if modifiers is left away, i.e. sed 's/pattern/string' is used only the first occurence is replaced.

delimiter (3x!), can be any character not present in cmd, 
pattern, string, modifier.



⇒ sed goes line by line (removing trailing 
newline), then puts .

⇒ underlying it is actually a more 
complicated structure using two buffers 
called pattern and hold space which can be 
accessed & modified in multiple ways:

→ if you're interested man sed.

37 / 55 



sed 's/unix/linux/1' <(echo "unix is a great os. unix is open source."
linux is a great os. unix is open source

sed 's+unix+linux+g' <(echo "unix is a great os. unix is open source.")
linux is a great os. linux is open source.

sed 's/.nix/linux/g' <(echo "unix is a great os. unix is open source.")
linux is a great os. linux is open source.

sed -E 's/[^ ]+ix /linux /g' <(echo "unix is a great os. unix is open 
source.")
linux is a great os. linux is open source.

38 / 55 

use regex in BRE

with -E, ERE enabled. Note 
the whitespace in the pattern!



1. convert tabs to 4 spaces using sed "s/$(printf '\t')/    /"

2. Prefix lines with string sed 's/^/prefix/'

3. suffix lines with string sed 's/$/suffix/'

4. Parenthesize first character of each (capitalized) word using

sed 's/\(\b[A-Z]\)/\(\1\)/g'

→ \b is anchor for word start, only works under GNU/Linux b.c. GNU 

extension

→ under Mac OS X/BSD the same can be achieved using

sed -E 's/([[:<:]][A-Z])([a-z]*)[[:>:]]/\(\1\)\2/g'

39 / 55 

trick to produce a tab character

special classes to match word start/word 
end



⇒ can use sed s/pattern// to delete a pattern. 
    E.g. sed/^The.*// deletes the content of lines starting with The

⇒ how to delete full lines?

→ sed /pattern/d to delete lines matching pattern

Examples:

1. remove empty lines: sed /^$/d
2. remove lines starting with the via sed /^the/d

40 / 55 



⇒ we can restrict commands to be applied to certain lines only!

⇒ prefix the command with the address space

Examples:

1. delete first line sed '1d'
2. delete last line sed '$d'
3. delete lines 3-5 sed '3,5d'
4. delete first 3 lines sed '1,3d' (counts from 1)
5. delete lines from lines 3 till end sed '3,$d'

41 / 55 



⇒ instead of using d to delete lines, one can also use p to print 
explicitly lines together with the -n option on sed which suppresses 
echoing each line to stdout (i.e. only output of actions is written to 
stdout!)

Examples:

1. print first 2 lines via sed -n 1,2p
2. print all lines which start with

# via sed -n /^#/p 

42 / 55 

without -n, sed would duplicate first two lines!



⇒ one can also mix line numbers 
and patterns to address lines!

⇒ Example: We want to remove 
license

sed '1,/\*\/$/d' file.scala

43 / 55 

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 
implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.io

import java.io._
import java.util.Locale

import com.github.luben.zstd.{ZstdInputStream, ZstdOutputStream}
import com.ning.compress.lzf.{LZFInputStream, LZFOutputStream}
import net.jpountz.lz4.{LZ4BlockInputStream, LZ4BlockOutputStream, 
LZ4Factory}
import net.jpountz.xxhash.XXHashFactory
import org.xerial.snappy.{Snappy, SnappyInputStream, SnappyOutputStream}

delete all lines starting from first till line where 
match for */ is found at end of line

start

end



⇒ strip file of comments and empty lines via sed!

sed '1p;/^#/d;/^$/d' script.sh

⇒ How does it work?
1. print first line (want to keep shebang line!)

2. remove all lines starting with #

3. delete all empty lines

44 / 55 

2,$ /^#/d  does not work, can 
either use addresses OR pattern to 
specify where to use command



⇒ with a line can be appended after addr space/pattern via
e.g. sed '1a\subheader file.txt

⇒ insert line before addr space/pattern via i
e.g. adding bash shebang line to a script via
sed '1i\#!/bin.bash/' script.sh
→ one can leave away the \, i.e. sed '1i test'

45 / 55 



→ Useful links to learn more sed commands:

1. http://www.theunixschool.com/2014/08/sed-examples-remove-delete-chars-from-line-file.html

2. https://www.geeksforgeeks.org/sed-command-in-linux-unix-with-examples/

3. https://www.gnu.org/software/sed/manual/sed.html

4. http://www.grymoire.com/Unix/Sed.html

46 / 55 

http://www.theunixschool.com/2014/08/sed-examples-remove-delete-chars-from-line-file.html
https://www.geeksforgeeks.org/sed-command-in-linux-unix-with-examples/
https://www.gnu.org/software/sed/manual/sed.html
http://www.grymoire.com/Unix/Sed.html


awk



⇒ pattern-matching programming language with variables, 
arithmetic operations, string operations, loops, conditionals, …

⇒ works similar to sed line-by-line and applies a small program to 
each line

⇒ in sed basically commands, patterns, modifiers vs.
    awk's philosophy: supply a tiny program!

48 / 55 



General syntax:

awk 'condition {action; action; }' file

⇒ condition can be e.g. a pattern, i.e. awk '/pattern/ { … }'\

⇒ simplest action: print → prints line for which condition is true

Example:

awk '/^tux/ {print}' file.txt  # print all lines
              # which start with tux.

49 / 55 
awk /pattern/  does basically the same as grep. If no action is specified, print is used per default.

can leave condition or action parts out if necessary.



⇒ awk automatically splits each line into fields, which can 
referenced using $1, $2, …

⇒ $0 holds the complete line

⇒ use -F delimiter to specify delimiter for awk

⇒ special variables exist which hold e.g. 
NF (number of fields)
NR (number of current record, i.e. line number)
FS (field separator)

50 / 55 



awk '{printf("%03d,%s,%d\n",NR,$0,NF);}' file.csv

51 / 55 

a,b,c
d,e,f
g,h,i

file.csv
001,a,b,c,1
002,d,e,f,1
003,g,h,i,1

stdout

C-like formatted print. (Same as printf in bash)



 awk -F, '/^[ag]/ {print $2 FS $1;}' test.csv

52 / 55 

a,b,c
d,e,f
g,h,i

file.csv

b,a
h,g

stdout

How does it work?
1. -F, splits on comma. I.e. for the first line $0 holds a,b,c $1 holds a
2. /^[ag]/ is only true for lines which start with either a or g
3. print $2 FS $1  prints NEWLINE delimited value of second field, then the field separator, 

then the first field. Note: print $2,$1  would print fields separated by whitespace

you can also write print($2 FS $1). Same as
printf("%s%s%s\n",$2,FS,$1)



⇒ awk IS complex. It has a very powerful language.

Resources:

1. http://www.grymoire.com/Unix/Awk.html

2. https://www.gnu.org/software/gawk/manual/gawk.pdf (570 pages !!!)

3. Effective awk Programming (3rd Edition) by Arnold Robbins

53 / 55 

http://www.grymoire.com/Unix/Awk.html
https://www.gnu.org/software/gawk/manual/gawk.pdf


There is no lecture next Tuesday, 8th October

⇒ Next lecture is on Thursday 10th October

⇒ Lab on 10th October, 8pm-10pm.

⇒ Intro to HTML, HTTP requests & CSS

54 / 55 





56 / 59 

Fetching lecture slides via grep/sed/curl:

curl -s https://cs.brown.edu/courses/csci0060/lectures.html | grep -Eo 
'href=".*\.pdf' | sed 's/href="\.//' | sed 
's|^|https://cs.brown.edu/courses/csci0060|' | xargs -n1 curl -O


