CS6

Practical
System*
Skills . __

Fall2019 edition. .
Leonhard Spiegelkerg s
3. Ispiegel Qs BrovyrEdu

-

E - &5 S

Logistics

= Office hours by appointment only from now onwards

= No lecture on 8th October

Midterm: 22nd October (in 3 weeks)

2/50

09.99 Recap

Last lecture:

- foreground vs. background processes
- creation of processes via fork / exec
- sending signals to processes via Kill

- archiving and compression via tar, gzip, bzip2, ...

3/50

09.99 Recap - quiz

What would you tell (angry) tux:

Good or bad practice?

| never quit programs, |
always Kill them using
kill -9 (SIGKILL)!

4/50

CS6 Practical System Skills
Fall 2019

Leonhard Spiegelberg Ispiegel@cs.brown.edu

10.01 Basic string processing

= We can use bash parameter expansion to manipulate strings

S{#variable} get length of string variable

Example:

tux@cs6demo :~S STRING="hello world"
tux@cs6demo :~S echo S{#STRING}
11

6/50

10.01 A more complex example

= S${variable:offset} and ${variable:offset:length}
can be used to extract substrings

substrings.sh sealion@cs6demo:~$./substrings.sh
#!/bin/bash sealion
STRING="sealion" ealion
alion

for i in “seq @ $((S{#STRING} - 1))°; |C—» Llion
do ion

echo S{STRING:Si} on
done n

7150

10.02 substring removal

${haystack#needle}

delete shortest match of needle
from front of haystack

shortest prefix

${haystack##needle}

delete longest match from front of
haystack

longest prefix

${haystack%needle}

delete shortest match of needle
from back of haystack

shortest suffix

S{haystack%$%needle}

delete longest match of needle
from back of haystack

longest suffix

single %/# for shortest match, double % %/## for longest match!

= can use for needle wildcard expression!

8/50

10.02 substring removal - examples

get file extension (shortest matching prefix)
PATH—"/home/tux/flle tar.gz"; echo S{PATH#*.}

get basename (longest matching prefix)
PATH—"/home/tux/flle txt"; echo S${PATH##*/}

get parent (path) (shortest matching suffix) Q‘X‘t’tei;f;i

PATH—"/home/tux/flle txt"; echo ${PATH%/*} tngzimt

| 9z, use HH#”.)

remove file extension (longest matching suffix)
PATH="/home/tux/file. tar gz"; echo ${PATHS%.*}

green part gets removed!
9/50

10.03 substring substitution

= use ${parameter/pattern/string} to perform substitution
of first occurence of longest match of pattern in parameter
to string

Example:

PATH="/home/tux/file.tar.gz"; echo ${PATH/tux/sealion}
/home/sealion/file.tar.gz

10/50

10.03 substring substitution

= with # or $ matching occurs from front or back

sealion@cs6demo:

~§ VAR="abc/abc/abc" ;echo S{PATH/abc/xyz}

/xyz/abc/abc =

sealion@cs6demo:

first occurence from left to right of abc is replaced with xzy

~S VAR="abc/abc/abc" ;echo S{PATH/#abc/xyz}

no match found from start

/abc/abc/abc <

sealion@cs6demo:

~§ VAR="abc/abc/abc" ;echo S${PATH/%abc/xyz}

/abc/abc/xyz =

sealion@cs6demo:

match found from back and replaced

~S VAR="abc/abc/abc" ;echo S{PATH/#/\abc/xyz}

/xyz/abc/abc <

match found at start (\ to escape /)

11 /50

10.03 substring substitution - example

= rename all . htm files to . html files! (same for jpg to jpeQ)

for file in "1s *.htm ; do mv Sfile ${file/%.htm/.html}: done

Note the % to replace the
extension!

12/50

10.03 Case conversions

= you can use the following commands to change the case for words

S{string”"}
S{string”}
S{string,, }

S{string, }

= converts string to UPPER CASE
= converts first character to upper case
= converts string to lower case

= converts first character to lower case

13/50

10.03 Case conversion - examples

tux@csb6demo:~S string="'HelLlo WORLD!''’
tux@cs6demo:~S echo S{string”*}
HELLO WORLD!

tux@cs6demo:~$ echo S{string”}
HeLlo WORLD!

tux@csé6demo:~§ echo ${string,}
heLlo WORLD!

tux@cs6demo:~S echo S{string,,}
hello world!

14 /50

From scripting off to some useful
commandes...

It's a pipe(d) world!

10.04 Working with text files

= there are multiple commands to work with text files

= think always of a text file as a collection of lines which

are made up of words (separable by whitespace)
= using | allows to combine commands/programs

= piped programs also often called filters because they

manipulate a character stream

17 /50

10.04 word count

wC = word count

wc [OPTION]...

= counts words (separated by whitespace) and returns number

Per default prints newline, word and byte count for each file

[FILE] .

-1 --lines print the newline counts
-m --chars print the character counts
-w --words print the word counts

18 /50

10.04 wc - examples

= when used with stdin, wc simply delivers a number!

tux@cséb6demo:~$ wc text.txt
3 14 76 text.txt

tux@cséb6demo:~$ wc -1 text.txt
3 text.txt =
tux@cséb6demo:~$ wc -m text.txt
76 text.txt
tux@cséb6demo:~$S wc -w text.txt

14 text.txt numbers formatted in columns
3 14 76

format is <number> <file>

tux@csb6demo:~$ cat text.txt | wec -1 text.txt

3 tux loves seafood so much
tux@csbdemo:~$ cat text.txt | wc -m one of his all-time favourites is squid
76 so yummy!

tux@csb6demo:~$ cat text.txt | wc -w
14 19/ 50

10.04 wc - example

= widely used piping example:
How many files XZY are in a directory?

ls *.Jpg |

ls *.jJpg |

wc —1

WC —W «—

same result

20/50

There will be more tools!

10.05 uniqg

uniqg [OPTION]... [INPUT [OUTPUT]]

= reports or omits repeated lines

= scans through a file and looks for adjacent matching lines

-c --count prefix lines by number of
occurrences

-d -repeated only print duplicate lines

-D -—-all-repeated print all duplicate lines

-u -—unique only print unique lines

22150

10.05 uniqg

- examples

sample.txt

apple
apple
peach
apple
banana
mango
cherry
cherry

apple

count
duplicates
across adjacent

groups
P

unig -c

R S S S)

sample.txt
apple
peach
apple
banana
mango
cherry
apple

As always options can be
combined!

print groups with no duplicates

~~

print groups with
duplicates

uniqg -d
apple
cherry

—

unig -u sample.txt
peach
apple
banana
mango
apple

unig -D sample.txt
apple

apple

cherry

cherry

print groups with
duplicates as often
as they occur

23/50

10.05 sort

sort lines of text files
sort [OPTION]... [FILE]...
= many options to tune sorting

= sorts ascending per default, i.e. a, b, cinsteadofc, b, a

-r -—-reverse reverse result

-f --ignore-case ignore case while sorting

-n -—numeric-sort to sort file numerically

24750

10.05 sort - examples

lexical sort

sample.txt

apple
apple
peach
apple
banana
mango
cherry
cherry

apple

sort sample.txt

apple
apple
apple
apple
banana
cherry
cherry
mango
peach

numeric sort

numMmbers.txt

34

2

65
200
97

-3
-1999

sort numbers.txt

sort -n numbers.txt

-1999

200
34
65
97

-1999

34
65
97
200

25/50

10.05 word count revisited

sort sample.txt

uniq -c

= sort lines, then counting for each adj. group yields word count!

sample.txt

apple
apple
peach
apple
banana
mango
cherry
cherry

apple

sort

apple
apple
apple
apple
banana
cherry
cherry
mango
peach

uniq -c

L S S

apple
banana
cherry
mango
peach

26 /50

10.05 splitting lines into words via fmt

fmt = format

= can be used to format lines to specified width, i.e. justification

= fmt -width to format text to width characters.
At least one word per line.

= Use fmt -1 to split into words!

27150

10.05 tr - translate

tr = translate

= simple tool to replace characters

= many more options under man tr

Useful example:

tr -d "[:blank:]" removes whitespace

AN

character class

281750

10.05 word count revisited - again

= what are the top 5 frequent words in Hamlet?

curl https://cs.brown.edu/courses/cs0060/assets/hamlet.txt \

| fmt -1 hamlet.txt \ Pipeline steps:
| tr -d "[:blank:]" \ 1. download text file
2. split text into words
| sort \ 3. remove whitespace surrounding words
| unig -c \ 4. sort words (creates groups for uniq)
| sort -nr \ 5. count adjacent groups
6. sort reverse groups to get most frequent word
| head -n > 7. return top 5 words via head

29/50

10.06 Columnar files

= many commands like unig -c prints output in columns

= CSV=comma separated values files or

TSV=tab separated values

offer "column” based storage of text data

= data separated by a separator character (, or \t)

csv file

columnA,columnB,columnC
hello,12,4.567
world,,8.9

tsv file

columnA columnB columnC
hello 12 4567
world 89

30/50

10.07 CSV files

= no standard, however, should follow "standardization" attempt
under RFC-4180 https://tools.ietf.ora/html/rfc4180

= separate fields using ,
= rows separated using newline character
= to escape comma or newline, quote field using "

= escape " in quoted field using double quote

31/50

https://tools.ietf.org/html/rfc4180

10.07 CSV files

Example:

a-complicated-csv-file.csv

"this is a column containing ""quoted content""" whitespace in a column is fine
"to escape

NEWLINE

this

needs

to be within "", the same goes for ,!",42

Though this is not standardized, much data gets shared as CSV files...

32/50

10.07 working with columnar files

= cut allows you to remove or select parts from each line

cut OPTION... [FILE]...

binary files

bytes e.g. useful for

e

e --characters=LIST | selectonly characters /
-b --bytes=LIST select only these bytes /
-d --delimiter=DELIM | use DELIM instead of TAB for field delimiter
-f --fields=LIST select only these fields
-—complement select the complement

= LIST is a comma separated list of numbers and ranges, e.g. 2, 5-8

33/50

10.07 cut - examples

echo "Hello world" | cut -c 1,7-11 1! byte positions are numbered
Hworld starting with 1 I!I!

echo "Hello world" | cut -f2 -d' '

world

echo "Tux's secret is sealionl23" | cut -d' ' -f 1-3 --complement
sealionl?23

Note: for ASCII chars -b and
- yield the same result!

34/50

10.07 cut - manipulating column!

= cut works over multiple lines! table.txt

= canh use cut to extract columns A L0 20
/ B 11 21

- C 12 22
tab separated file

Examples:

cut -f<n> table.txt # extract n-th column

cut —-fl --complement table.txt # remove first column

cut -fl,3 table.txt # extract first and third column

35/50

10.07 Using cut & Co

= Example: extract columns 1 and 3 from simple csv file
and add a header

example.csv out.csv

iPhone Pro,Apple, $999 Product, Price

Pixel 3,Google,$499 = \\iPhone Pro, $999

Galaxy S10, Samsung, $644 Pixel 3,5499
////////////' Galaxy S10,5644

Note the newline here!

echo "Product,Price <

"cut -£f3,1 -d',' example.csv " > out.csv

36/50

10.07 Some notes on cut;

= cut ignores order of LIST, i.e. cut -f1,3

Is the same as -£3, 1
= Same goes for -¢
= Do not try to parse CSV files with cut, there are better tools.

= Stick to manipulation of simple output,

e.g. from other bash commands like unig -c

37150

10.07 Combining columns

= paste allows to combine two files column-wise

paste - merge lines of files
paste [OPTION]... [FILE]...

= —-d parameter for delimiter
=> —s paste one file at a time, i.e. transposed result

= can be used to reorder columns!

38/50

10.07 paste - basic examples

countries.txt

Example: merging columns

USA
paste -d',' countries.txt capitals.txt
gt France
USA, Was 1ng on Ttaly
France, Parils Brazil
ITtaly,Rome

Brazil,Brasilia :
countries.txt

Example: transposing columns Washington
paste -sd ',' countries.txt capitals.txt Earls
. ome
USA, France, Italy,Brazil o
Brasilia

Washington, Paris, Rome,Brasilia

39/50

10.08 Process substitution

= many of the text processing commands expect a file(path) as
parameter

= writing to tmp files is cumbersome and does not allow for
one-liners

< (cmd) allows to pass stdout of cmd like a filepath

40/50

10.08 Adding a header - revisited

echo "Product,Price

"cut -£f3,1 -d',' example.csv " > out.csv

cat <(echo "Product,Price") <(cut -f1,3 -4d','’

'\/’

example.csv) > out.csv

treated like we would two file paths, i.e.
cat fileA.txt fileB.txt

There's always a one-liner around :)

41/50

10.08 paste - reordering columns

table.txt table3l.txt
A 10 20 20 A
B 11 21 21 B
C 12 22 22 C

paste <(cut -f3 table.txt) <(cut -fl table.txt)> table3l.txt

42 /50

10.09 diff

diff [OPTION]... FILES

= compares files line by line
= —vy to put output in two columns for direct comparison

= lines prefixed with < are from the first file,
with > from the second file

= exit status of 0 indicates that the files are the same

= detailed add (a), change (c), delete (d) syntax to follow changes,
e.g. 0a2 means after line 0 2 lines of ... need to be added.

43 /50

10.09 diff - example

tux@cs6demo:~§ diff storyA.txt storyB.txt storyA.txt

1c1
< Tux is a little penguin

Tux is a little penguin
who loves to work with the shell
under Ubuntu.

> Tux is a proud penguin

3c3
< under Ubuntu. a:add storyB.txt
- c : change Tux i _
_ ux is a proud penguin
> on his Macbook. d: delete

who loves to work with the shell
on his Macbook.

tux@csb6demo:~S diff -y storyA.txt storyB.txt

Tux is a little penguin | Tux is a proud penguin
who loves to work with the shell who loves to work with the shell
under Ubuntu. | on his Macbook.

44 /50

10.09 diff - example w. process substitution
= comparing two directories w.r.t to their structure

tux@csé6demo:~§ diff <(1ls /usr) <(ls /usr/local)

1a2

> etc

5¢c6

< local add after line 1 from other file line2

> man
tux@csé6demo:~S diff -y <(1ls /usr) <(ls /usr/local)
bin bin
> etc
games games
include include
1lib 1lib
local | man
sbin sbin
share share
src src

45/50

10.10 xargs

xargs - build and execute command lines from standard input
xargs [options] [command [initial-arguments]]

= allows you to execute a command multiple times by feeding
words as arguments to it!

= —-a file toread from file, else stdin.
= -n max-args use at most max-args per command line

= many more options, as always man xargs

46 /50

10.10 xargs - downloading urls

xargs -n 1 —a urls.txt curl -0
alternatively:

cat urls.txt | xargs —n 1 curl -0

urls.txt

https://cs.brown.edu/courses/csO0060/assets/slides/slidesl.pdf
https://cs.brown.edu/courses/csO0060/assets/slides/slides2.pdf
https://cs.brown.edu/courses/csO0060/assets/slides/slides3.pdf
https://cs.brown.edu/courses/csO060/assets/slides/slides4.pdf
https://cs.brown.edu/courses/csO0060/assets/slides/slides5.pdf

47 /50

10.11 More text commands

= there are many more text processing commands
available on *NIX; e.qg.:

- join

- expand/unexpand
- look

- fold

- column

- iconv

= large list under https://www.tldp.org/LDP/abs/html/textproc.html

48 /50

https://www.tldp.org/LDP/abs/html/textproc.html

Next lecture

Regular expressions

- grep
- sed
- awk

Homework 4 out today!

Lab today: Regex intro

49 /50

End of lecture.
Next class: Thu, 4pm-5:20pm @ CIT 477

