, gel@cs brown. edu




08.98 Recap

Last lecture

- hostnames
- SSH
- password based
- key pair based authentication
- configuration via ~/.ssh/config
- logging in securely to a remote
- running commands on a remote machine
- scp and rsync to copy files between local machine, remote(s)

2137



More on scp/rsync



08.99 archives

= often more convenient to send
one large file than many small ones

= tar = tape archiver is a tool to
create one file out of many

= resulting file is called a tarball or
tar archive

= typical file extension: . tar

4137



‘1‘ 2 — : - O B eSS EvEee T

“ 1) UL \\_\3"“‘ ;
M«J\ This is how tape looks today

25 Am s VV f L'¢
MINRe ¥ & ’k S ’1"'!'

f y
oy w4y
,‘N«, o ﬂu,,“‘ w4 4 ﬁ“
" ‘l;,‘ T8
[ i / v

. . ~ i
iy ‘ﬂt?‘ “:P:. ; ﬁ \ LA "y Y. ‘p w‘ {
} \ 1’(“1‘? 1: J. . R “l‘ 4 A‘la)
SEE ?“ne"_.
S R W
e e ¥ |
- a g , = e

/
SERLLEELELE

femMaEas L
"

fl
i il
"'vvvvv&;w.'-_- ' .
i
[
walg oAy
e e
==
'l
=
ad
—
R
-
R

)
= ETTEY

" if"ﬂ“ '1u 'm 1u

=~y ’11.11|5 »
s ML b

—- > - 1@ %

""*mm"j’*ﬂb‘ lfah ol -j if i

- =

f

iy "l'”vf,if{l’ b
S T i

/

-

'Itnf s

é STORAGETEK
‘Iil‘ III':""‘
il,l g i

i -

)

s
4
i
nN—
=\ =
=
\‘ \
=
\J
e
Loy =
|
i L

i
—
=
—
N . N =
Sy —
v N <A =8
N
R——
—




08.99 tar

= tar allows you to drop the - when combining options.

option (can use with/without -) meaning

x extract files

verbose, print file names when extracted or

compressed
f use following tar archive for the operation
c create archive

x or ¢ is specified, interpret archive as
gzipped file

6/37



08.99 tar examples

1.

> 0 n

ok

create archive tar cvf archive.tar list

extract all files from archive tar xvf archive.tar
extract files to directory tar xvf archive.tar -C dest
extract single/multiple files from tar archive via

tar xf archive.tar /path/to/file.txt

list contents of archive.tar via tar tf archive.tar

appending files to archive.tar via tar rf archive.tar

7137



08.99 compressing tar files

= to reduce the size of a tarball, often it is compressed afterwards

and the extension of the compression program appended

extension compress uncompress
.gz gzip gunzip

bz2 bzip2 bunzip2

XZ Xz unxz

there are many more compression algorithms, e.g. 7zip, rar, zip, snappy. The ones above are

standard ones available typical on *NIX platform

8137



08.99 tar + compression

= to compress a tarball we can either pipe it with a compressor or
run it in 2 commands

. use - to signal tar to
Example' write to stdout

tar cf - *.txt | bzip2 > archive.tar.bz?

bunzip2 -c¢ archive.tar.bz2 | tar xf -

AN

[ use -c option to output ] use - to signal tar to
9/37

to stdout read from stdin




08.99 tar - the z option

= for convenience tar has an option z to work with a compressed
gzip file.

Example:
tar cvzf archive.tar.gz *.txt
tar xzf archive.tar.gz

= to use bzip2 there is an option 7, for general compress tool use
Z or a to auto determine compression program

10/37



CS6 Practical System Skills
Fall 2019

Leonhard Spiegelberg Ispiegel@cs.brown.edu




09.01 What is a process?

A process is a (running) instance of a program in memory.

Each process has 4 properties associated with it:

1. PID
2. PPID
3. TTY
4. UID

process-id

unique identification number for a running process
parent process-id

process id of the process who launched the process
(teletypewriter) terminal

to which the process belongs to.

user-id user to which the process belongs to )57



09.02 Listing processes

ps prints process status

Leonhards-MacBook-Pro:~ sealion$ ps

PID

3761
4227
8875
16867
16885
16930

PID = process ID
[TY = terminal

TTY

ttys000
ttys001
ttys002
ttys002
ttys003
ttys003

OO0

TIME

100.
:00.
:00.
:00.
:00.
101

19
08
33
12
07

.04

CMD

-bash

-bash

-bash

ssh tux@cs6server
-bash

ssh -X tux@csé6server

TIME = CPU time given to the process
CMD = command used to start the process

13/37



09.02 ps selecting what information to display

ps -0 commalist

with commalist being a list of keywords separated by comma

keyword

meaning

sCcpu

cpu utilization of the process in %

args (can also use cmd or command)

command with all its argument as string

cputime cumulative CPU time (check man page for format)
pid process id
ppid parent process id

tty (can also use tt)

terminal the process is connected to

uid

(effective) user id

14 /37



09.02 ps -0 example

tux@ip-172-31-29-145:~§ ps -o user,group,uid, pid, ppid, tty, cputime, %cpu, args

USER GROUP UID PID PPID TT TIME %CPU COMMAND
tux tux 1001 13311 13310 pts/0 00:00:00 0.0 -bash
tux tux 1001 13832 13311 pts/0O 00:00:00 0.0 ps -o user,group, ...

this here reads fully
ps -0 user,group,uid, pid, ppid, tty, cputime, %cpu, args

as always many more options, please read the man pages for your system!

15/37




09.02 Daemons & Zombies

A daemon is a process that runs
continuously and is (usually) not attached
to a terminal.

= e.g. sshd is a daemon

= daemons are named with d at the end
often

A zombie is process which is not running
more but still exists in the process table,
l.e. still has a PID assigned to it.

16 /37



09.03 ps - listing all processes

—a to list all process except session leaders and processes which
are not associated with a terminal (i.e. daemons usually)

-A list all processes

= there are quite a few processes running on a system. Helpful to
feed them to e.g. head/tail or a pager like less/more

17137



09.03 ps -A

tux@ip-172-31-29-145:~$

Example:

root root
root root
tux tux
tux tux
root root
tux tux
tux tux
tux tux
root root
root root

0
0
1001
1001
0
1001
1001
1001
0
0

ps -A -o user,group,uid, pid, ppid, tty,args | tail -160

13422
13423
135604
13505
13743
13770
13857
13858
19603
19608

2 2
2280 ?
13423 ?
13504 pts/1

2 2
13505 pts/1
13311 pts/0
13311 pts/0

2 2

2 2

[kworker/u30:1]
sshd: tux [priv]
sshd: tux@pts/1
-bash
[kworker/u30:3]
python3

ps -A -o user,group,uid, pid, .

tail -10
[ xfsalloc]
[ xfs_mru_cache]

18 /37



09.03 listing all processes

-x lists all processes which are owned by you

= often uses in combination with a, i.e. ps -ax

tux@ip-172-31-29-145:~$ ps

PID
13193
13194
13310
13311
13504
13505
13776
13879

TTY

?

?

?
pts/0
?

pts/1
pts/1
pts/0

STAT

TIME
100
100
100
100
100
100
100
100

OO0

-X
COMMAND
/lib/systemd/systemd --user
(sd-pam)

sshd: tux@pts/06

-bash

sshd: tux@pts/1

-bash

python3

ps -X

19/37



09.04 How a process is born

= processes in UNIX are created using 2 steps: fork and exec

= to create a new process, a fork system call is performed which

creates a copy of the calling process

= this forked process or child process, inherits everything that the

parent (i.e. the calling process) has in memory, but gets a new pid

= exec replaces the current process with a new one, i.e. loads a

program into the current process space

20/ 37



09.04 How a process is born

= first process started is an init system (here systemd) which
launches system daemons and processes with PID=1, PPID=0.

tux@ip-172-31-29-145:~8 ps -o user,group,uid, pid, ppid, tty,args -ax

USER GROUP UID PID PPID TT COMMAND
root root 0 1 0 ? /1lib/systemd/systemd --system --deserialize 38
\ kernel thread daemon
in linux

systemd is the first daemon
launched.
Under Mac OS X, the init
system is /sbin/launchd

211737



09.04 How a process is born - pstree

= pstree can be used to show fork structure
(add username as argument)

tux@ip-172-31-29-145:~S pstree tux
sshd——-bash——pstree

sshd——->bash——-—python3

systemd——(sd-pam)

22137



09.05 Running commands & forking

shell process parent process

; shell process
wait >

execve | program executes zombie process
program

= when you type a command CMD in the terminal and press ENTER, the shell forks itself to

child process

execve is just a /

variation of exec

create a shell child process and then runs exec CMD and waits for the child process to

terminate

= you can also execute CMD by running exec CMD, however this will replace the shell with

the running process. l.e. when the process terminates, there is no more shell. 23/37



09.05 Example

Leonhards-MacBook-Pro:~ LeonhardS$ ssh tux@csé6server
Welcome to Ubuntu 18.04.2 LTS (GNU/Linux 4.15.0-1044-aws x86_64)

Last login: Tue Sep 26 ©02:08:38 2019 from 74.297.48.5
tux@ip-172-31-29-145:~$ 1ls /home/tux

decrypted.txt encrypted.txt example.sh message.txt script.sh
tux@ip-172-31-29-145:~§ exit «w—

|

logout
Connection to cs6server closed.
Leonhards-MacBook-Pro:~ LeonhardS$

Leonhards-MacBook-Pro:~ LeonhardS$ ssh tux@csé6server
Welcome to Ubuntu 18.04.2 LTS (GNU/Linux 4.15.0-1044-aws x86_64)

Last login: Tue Sep 26 02:08:38 2019 from 74.297.48.5
tux@ip-172-31-29-145:~S exec 1ls /home/tux
decrypted.txt encrypted.txt example.sh message.txt script-sh

l

after child process
terminated, back to
bash process

Connection to cs6server closed. =—
Leonhards-MacBook-Pro:~ LeonhardS$

bash was replaced
with Is, thus "no more
shell"

24137



09.06 Variables

within a script we can read PID, PPID, UID via $$, SPPID, SUID

Example: v eh

tux@ip-172-31-29-145:~S echo S$ #!/bin/bash

13505 echo "process ID: SS"
tux@ip-172-31-29-145:~$ ./vars.sh echo "parent process ID: SPPID"
process ID: 14139 echo "user ID: SUID"

parent process ID: 135605

user ID: 1001

= Under GNU/Linux pidof name can be used
to find process ids of name processes

25/37



How to launch and work with long
running processes?



09.07 Foreground and background processes

= when we launch a new process (i.e. by typing a command), it
runs per default as a foreground process

= a foreground process is one that we can interact with using the
terminal, i.e. it waits for user input via the attached terminal

= a background process runs independently of the human user

27137



09.08 Interacting with processes

= to interact with processes we can send them signals

= for a list of all supported signals, run kill -1

Synopsis:

kill [-s signal name] pid ...

kill -1 [exit status] default signal send by
- kill is usually SIGTERM

kill -signal name pid ...

kill -signal number pid ..

28137



09.08 Interacting with processes

signal name

HUP

INT

QUIT

KILL

TERM

abbreviation

SIGHUP

SIGINT

SIGQUIT

SIGKILL

SIGTERM

code

15

english

hang up

interrupt

quit

Kill

terminate

meaning

sent to process when its controlling
terminal is closed

program interrupt, i.e. typically issued by
user. Tell a process to stop doing what it is
doing right now, used for REPLs a lot.

quit process for misbehaving process,
usually produces a core dump.

non-catchable, non-ignorable Kill

software termination signal, politely ask
program to terminate. Normal way to stop
a process.

29/37



09.08 Sending signals to foreground process

= when you work in the terminal, you can send signals to the
foreground process with the following keyboard shortcuts

(configurable)

SIGINT Ctrl + C
SIGQUIT Ctrl + \
send EOF marker Ctrl + D

Note: Depending on the terminal you're using,
different keyboard shortcuts are necessary. You
may also configure it to send additional signals.

30/37



09.08 How to terminate a process?

o M LN~

Try SIGINT (Ctrl + C)

Some programs terminate if you send EOF marker viaCtrl + D
If this does not work, send SIGTERWY, i.e. via kill (default signal)
Send SIGQUIT if SIGTERM did not work (Ctrl + \)

If all of this failed, use ki1l -9 pid

you can get pid via pidof or better, via ps
—aXx

31/37



09.09 Launching a background process

= to launch a background process append &

long-running-script.sh
#!/bin/bash

Example: echo "starting a slow script...”
. . for i in “seq 1 10°
./long-running-script.sh & do q
echo "iteration S$i, let's go to sleep..."
[l] 227745 sleep 1s
done
echo "...done!"

= will produce output with a job number and pid of the launched process
= output of background process will be still printed to terminall

Use redirection to avoid this!
32137



09.09 listing background processes/jobs

= we can get a list of running background processes by running

the command jobs

tux@ip-172-31-29-145:~/1lecture@7$ jobs

[2]- Running
[3]+ Running

./silent-slow-script.sh &
./silent-slow-script.sh &

silent-slow-script.sh

#!/bin/bash
for i in “seq 1 160°
do
sleep 1s
done

331737




09.09 Suspending a process, fg & bg

= you can suspend the foreground process by issuing Ctrl + Z
= to bring it back from suspended mode, use

fg %$num to make it the foreground process
bg $num to make it a background process

= %num is the job number, i.e. retrieved via jobs

= instead of $num, you can use %+ for the current job and
% - for the previous one

34 /37



09.10 Launching long-running remote processes

= we can use ssh to start remotely a process and use & to not wait
for it

Example:

ssh tux@csédemo "/home/tux/long-running-script.sh > /home/tux/out.txt 2>&1 &"

AN

[ note the quotes, else ]

redirection would be
locally!

35/37



09.10 Launching long-running remote processes

= Alternative: login via ssh, start process via &, logout

= Problem: When exiting the shell via exit (i.e. terminating the SSH
session), a SIGHUP is issued.

= This may cause some processes to terminate!

= Solution: start process with nohup, to ignore HUP signal, i.e.
nohup ./some-process.sh &

36 /37



End of lecture.
Next class: Tue, 4pm-5:20pm @ CIT 477



