
CS6
Practical
System
Skills
Fall 2019 edition
Leonhard Spiegelberg
lspiegel@cs.brown.edu

Recap

Last lecture:

- bash scripting
- exit codes / status codes / return codes ⇒ 0 success, else failure

- && and II

- [and test

- bash builtin extension: [[…]]

- if

- grouping commands via subshell (...) and braces {...; }

- loops, arrays & functions

2 / 58

Recap - Quiz

Fix the following statements! Assume x and y are variables.

3 / 58

wrong z=$(x * 3)

fixed

wrong if [x > 10 || x < -10]; then echo "more than one digit"; else echo "one digit"

fixed

wrong echo "x^2 + y^2: `x ^ 2 + y ^ 2`"

fixed

Recap - Quiz

Fix the following statements! Assume x and y are variables.

4 / 58

wrong z=$(x * 3)

fixed z=$((x*3))

wrong if [x > 10 || x < -10]; then echo "more than one digit"; else echo "one digit"

fixed if [$x -gt 10] || [$x -lt -10]; then echo "more than one digit"; else echo "one digit"; fi

wrong echo "x^2 + y^2: `x ^ 2 + y ^ 2`"

fixed echo "x^2 + y^2: $((x ** 2 + y ** 2))"

08 SSH
CS6 Practical System Skills
Fall 2019
Leonhard Spiegelberg lspiegel@cs.brown.edu

08.01 Basic networking

⇒ Networking usually follows the pattern of a client connecting to a
server and performing a request which yields a response.

6 / 58

Client Server

Do X for me...

OK, here's your answer...

Now, do Y for me...

OK, here's your answer...

TuxMachine cs.brown.edu

hostname

role

08.01 Basic networking

⇒ to connect to a server, we need to know its address.

⇒ in a network, each device is assigned an IP (Internet Protocol)
address. Two flavours:

⇒ IPv4: 192.168.0.1 (32 bit integers, 4 8-bit segments)
⇒ IPv6: fe80::c8c:de7c:82dd:6012 (128bit, 8 16-bit segments)

⇒ a machine is also called a host, which has a hostname

⇒ you can use hostname to get the hostname of your machine

7 / 58

08.01 Basic networking

⇒ one host communicates with another host over a connection.

⇒ the outlet (or endpoint) over which the communication occurs is
called a socket.

⇒ On a machine there are 216 sockets available, identified by a 16
bit unsigned integer. Each socket binds to a unique port numbered
0-65536.

⇒ port numbers < 1024 are reserved.

8 / 58

08.01 Sockets

A socket is an end-point of a two-way communication link of two
programs running on a network. Each socket is bound to a port
number 0-65536.

9 / 59

08.01 Sockets and IP addresses

⇒ to specify a connection we need two IP addresses and one port

10 / 58

Client
192.168.0.20

Server
192.168.0.30

communicate via port 80

08.01 Communication layers

11 / 58

⇒ more on the OSI model:
https://www.cloudflare.com/learning/ddos/glossary/ope
n-systems-interconnection-model-osi/

⇒ more on networks in CS168

⇒ a protocol defines how two hosts/devices
communicate

⇒ OSI = Open Systems Interconnection model
is a model to allow different systems to
communicate along clearly defined
abstractions and standards

⇒ different (abstraction) layers for
communication with each of them having
different protocols

⇒ in CS6 we only care about host layers

https://www.cloudflare.com/learning/ddos/glossary/open-systems-interconnection-model-osi/
https://www.cloudflare.com/learning/ddos/glossary/open-systems-interconnection-model-osi/

08.01 Labels for IPs

⇒ IPs are hard to remember and assignment
 of IPs frequently changes

⇒ there are multiple ways to assign a label to an IP

⇒ depending where the machine we want to connect to
 is located, we can use different options to name it:

→ hostname i.e. a tag to a computer in a network
→ domain name i.e. a tag to use with a service which provides

a final tag or address

12 / 58

08.01 Defining hostnames

⇒ hostname reveals the name
 under which the current
 machine can be reached

⇒ we can manually tag an IP,
 by editing /etc/hosts
 (requires root access)

13 / 58

1 ##
2 # Host Database
3 #
4 # localhost is used to configure
the loopback interface
5 # when the system is booting.
Do not change this entry.
6 ##
7 127.0.0.1 localhost
8 ::1 localhost

/etc/hosts

08.01 Looking up IPs via URI resolution

⇒ resources can be identified via a URI=Uniform Resource Identifier

Generic syntax:

URI = scheme:[//authority]path[?query][#fragment]

The authority itself can be split into

authority = [userinfo@]host[:port]

Note: path starts with /, which is considered part of the path

14 / 58

08.01 URLs are URIs

15 / 58

https://cs.brown.edu:80/courses/cs0060/index.html

scheme

⇒ URL = Uniform Resource Locator
 (often referred to as web address) is used to reference a web resource

host port path

https://cs.brown.edu/courses/cs0060/index.html

08.01 DNS = Domain Name System

DNS = Domain Name System

⇒ translates URIs (incl. hostnames) through DNS servers to IP addresses
16 / 58

08.01 hostnames to IP

⇒ getent hosts unix.stackexchange.com to
 list addresses under which unix.stackexchange.com
 can be reached

⇒ to restrict to IPv4 only, use getent ahostsv4 hostname

⇒ *NIX tries to resolve hostname via multiple services,
 thus multiple IPs may be available for one URI.

17 / 58

getent works under Linux, use dns-sd -q hostname under Mac OS X

How can we access
a remote machine?

08.02 Working remotely - historic commands

⇒ as part of BSD, programs rlogin, rsh, rexec were shipped

rlogin allows you to login into a remote machine
rsh remote shell, allows you to open a shell without login

 to execute arbitrary commands
rexec Like rsh but with login, reads username and

 password (unencrypted) from a socket

⇒ Problem: All these tools send user passwords over the network in a
clear format, without any encryption. This is a security risk!

⇒ rlogin is the worst, by relying on IP addresses for authentication; but
it's easy to fake an IP address and take over a remote machine!

19 / 58

How to encrypt data, passwords,
user names to securely work with a

remote machine?

08.03 Basic cryptography

Symmetric encryption:
same key is used for both encryption and decryption

21 / 58

plain text cipher text

symmetric key

plain textcipher text

symmetric key

08.03 Basic cryptography

Some widely used symmetric encryption algorithms are:
Blowfish, AES, RC4, DES, RC5, and RC6

⇒ widely used is AES, which can be used with 3 different key
sizes: 128, 192 or 256 bit

⇒ The more bits the key has the better the encryption;
 but the slower encryption/decryption

We can use openssl to encrypt/decrypt a file!

22 / 58

08.03 AES-128 via openssl

⇒ to encrypt a file use

Encrypt:

openssl aes-128-cbc -e -pass pass:secret \
-in file_to_encrypt.txt -out encrypted.txt

Decrypt:

openssl aes-128-cbc -d -pass pass:secret \
-in encrypted.txt -out decrypted.txt

⇒ openssl provides many more features, i.e. man openssl or openssl help

23 / 58

Remaining problem:
How to exchange the key?

08.04 Asymmetric/public key cryptography

25 / 58

Generate two keys: one public key and one private key

⇒ share and use public key to encrypt message,
 but only holder of private key can decrypt message.

08.04 General usage

26 / 58

08.04 How to exchange a key?

Diffie-Hellman-Merkle key exchange

27 / 58 ⇒ allows you to create a shared, private key! Details in a cryptography class, e.g. CS151

08.04 Diffie-Hellman-Merkle exchange
⇒ can be used to share a
secret key, which then may
be used for following
symmetric encryption

⇒ Problem:
Man-in-the-middle attack
possible because no
authentication that public
keys are from actual
Alice/Bob respectively.

28 / 58

08.04 RSA key exchange

RSA is a true public cryptography algorithm named after
Rivest-Shamir-Adleman

29 / 58

08.04 RSA vs. Diffie-Hellman-Merkle
⇒ RSA can be used for both exchanging a key OR direct, asymmetric
encryption.

⇒ Also DHM can be used for both exchanging a key OR direct encryption

⇒ they use different underlying principles and are vulnerable to different
attacks

⇒ symmetric cryptography is usually faster than asymmetric cryptography

⇒ Details in Cryptography class

30 / 58

08.04 Public key cryptography

Summary:

Generate a key pair, ONLY share the public key.
NEVER share the private key.

⇒ for additional security, private key is often protected by a
passphrase. I.e. the private key for asymmetric encryption is
encrypted using a symmetric encryption (per default AES-128).

⇒ Advantage: If someone gains access to your system, private key
still somehow encrypted. 31 / 58

Practical public key cryptography...

...thanks to SSH!

08.05 SSH

SSH = Secure Shell

⇒ invented 1995 at Helsinki University of Technology, Finland

⇒ cryptographic network protocol to allow safe remote login

⇒ replaced previously used standards such as rlogin, rsh, rexec and telnet

⇒ defacto standard way to work with other machines over a network today

⇒ uses port 22 per default

34 / 58

08.05 SSH protocol

⇒ ssh handles the set up and generation of an encrypted TCP
connection

⇒ allows to login securely remotely (ssh)

⇒ allows to copy files securely (scp)

35 / 58

08.05 SSH programs

⇒ there are two programs:

Client: ssh
Server: sshd ⇐ runs in the background

⇒ if sshd is not running, you can not login

⇒ different implementations for ssh/sshd
 most popular one: OpenSSH

36 / 58

08.05 SSH authentication options

⇒ SSH provides 4 different authentication methods

1. Password

2. Public/private keypair ⇐ this is the one you should use

3. Host-based authentication

4. Kerberos

37 / 58

08.05 SSH - Password authentication

38 / 58

tux@server $: ssh remote-machine
password:

remote-machine $:

ssh sshd

This is the authentication used when
you login to department machines via
ssh user@ssh.cs.brown.edu

08.05 Public/Key Cryptography

Using public/key cryptography to login:

1. Generate keys via ssh-keygen
(generates private and public key)

2. Copy public key to remote machine and
append it to ~/.ssh/authorized_keys

3. login via ssh -i <private-key-file> remote-machine

39 / 58

08.05 Step1 - Key generation

⇒ you can generate a key pair using ssh-keygen

⇒ keys should be stored by default in ~/.ssh/id_rsa (private)
and ~/.ssh/id_rsa.pub (public)

⇒ ssh uses default names, i.e. if id_rsa.pub and id_rsa
 exist in ~/.ssh, you can login without specifying a key explicitly.

⇒ you can protect your key with a passhrase (recommended!)

40 / 58

08.05 Step1 - Key generation

ssh-keygen

41 / 58

useful options meaning

-t rsa select rsa for key generation

-b bits how many bits to use for key, anything
larger than 1024 is good

-N new_passphrase specify passphrase on the fly to protect
key

-f output_keyfile creates private key under output_keyfile
and public key under output_keyfile.pub

08.05 Step1 - Key generation

tux@server:~$ ssh-keygen -b 2048 -t rsa -f tuxkey
Generating public/private rsa key pair.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in tuxkey.
Your public key has been saved in tuxkey.pub.
The key fingerprint is:
SHA256:RozagpJ2mW8gki9MvVHTypZldp1DsIkof1vx3L8rLcc tux@server
The key's randomart image is:
+---[RSA 2048]----+
| ... |
| oo. = . |
| . +.*o= + |
| o..BoB.. + o |
|=+.Bo*..S. o . |
|=oo *...o . |
|.... o . o. |
| . . o E.|
| +o.|
+----[SHA256]-----+

42 / 58

Example:

08.05 Key files

43 / 58

-----BEGIN RSA PRIVATE KEY-----
MIIEpQIBAAKCAQEAyrPwcbd48cOIQZNvZMkUozPlAR4mBW47PxjD1LXQtzZRYkAe
E/5k7cEBNU4tCHbEAiWw9jE3wi610mInV/nYQ/jEbHnWJ8QVHpyhUC5QKuAPhdY3
+Mp2HFDbHMA2tY7m7wuOg27QghiG6QCDFMOaG678QI71970l5LOgsL7/lC2/MV4I
pLZQXaONSstIMoP7zLKeEoMp7BgoTnArRWu2V2U4DECERoTSdK+HOph5hpl2vLWC
Ut/wJ/4K98kiCDrOfPEagWYJf0U14WOU4jXOYFJkG7kc8xPyvBqRKScrcv0uscCX
2tG+wHO3BzM1zUozQ6pEPA4T/6TAej4OxOEBrwIDAQABAoIBAHzSg50zMzoFg5GG
HdF9dcTuPvYKP7WWZMt9D5KcB5Pa0hDjlOIRBMvXz0upAVg18ouz9B4WvtRH+VU9
dibZxtBMj4CRIkxIlgzMvRVn/5v3b/elq7/7xPG45MT2pHn3LsRDZJYRFjsWqXUw
CIgvz2V+wv1qS5MsGfqUlr5gT3hJ/uJp8I2kFrLsc8/BhsxixCpVFd4HKiv1WRQW
AmzJRC3Ew1sSp9fNFrRF5O6IJvfC7KRn3eDe7MW6SamiEpHcYZxHkXbUF4sHRKAS
hyZEPCP16j4MNZYhvrxXEa6HBYMZIfCpBpIl4JE1bkRRygvzhhcDiDv7b/hfkrF/
04FdAgECgYEA5dgUaje/0YIGemnYW7CIFnB6NTWn+UHag3UE7AJ3pLNJt/qPXlTq
WifPFK8TkIjPlXeJ6HR4K4QQRbItkisWNCc99dcbF+6rcKrUNcY0eLrt8VsUPYQN
Hx8PpqLRN0c68lQ3U+iq1G3uNeaGTvXrykcDcXwWIdlzKloIlNc2GwECgYEA4cUr
r0N9+bQrYGf/WNc0KiQUbb10zN0eJ7eIMfEUzq4Xn6kDbCZCoT6bT0EI3K+MymTT
sU8qpuEfgBDqMxrdSzwigmLeecgtH4CxuDQbjjcS/3YzmE2bjFHRUwp6COM+T+rA
uwKY+kAC8ruf+llNllHW4RBKYoRiGAgTSrAgjK8CgYEA0qu6Gpm64ifSFEYMIA6w
zhCOk1L5AcjQpwmNV13zmC0VduLcolQm8jfm4UiQIDymOJP2/fAzbX+BAsEMcBu6
IFePvVRK6ybCUWTjWd6wnbCJBF69MJ1nAY2Q5OX76jUJ3LBAflKWsluIqjMADEPw
udlZWJ2qE6CipMEdeH/CggECgYEAuqVqrAY8C0dr5NOVQjkHox8Y1HCgMw1KdMNC
ESehcAx080Wi0rH+u5cqhqbZULjAyEH60McGF9hdVl6lf4JiGGSqkuhxzHQ0+apH
QmWxsizNw+xQU0U1pxes2d37bYWQajlFBFXtalWpGksKwsk5X2BhKMdy92dCQWPL
rx9UiXkCgYEAkcvhOec0kO9NTuFfzqaYWEsbxFM8eA/TR6P9MrfJX4z8yvJ0zkxl
ptFAn5nbZSdCPCJHof/FTnslpfMS80Pw0Xrp/FLVBiT6ynObIaFJUsKQLxcgEOu5
CeIOtVliGfIJcCDlNatY3gpuRC7qzYnWK08HjZ+c95WdP8GzUryAn3U=
-----END RSA PRIVATE KEY-----

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDKs/B

xt3jxw4hBk29kyRSjM+UBHiYFbjs/GMPUtdC3NlFiQB

4T/mTtwQE1Ti0IdsQCJbD2MTfCLrXSYidX+dhD+MRse

dYnxBUenKFQLlAq4A+F1jf4ynYcUNscwDa1jubvC46D

btCCGIbpAIMUw5obrvxAjvX3vSXks6Cwvv+ULb8xXgi

ktlBdo41Ky0gyg/vMsp4SgynsGChOcCtFa7ZXZTgMQI

RGhNJ0r4c6mHmGmXa8tYJS3/An/gr3ySIIOs588RqBZ

gl/RTXhY5TiNc5gUmQbuRzzE/K8GpEpJyty/S6xwJfa

0b7Ac7cHMzXNSjNDqkQ8DhP/pMB6Pg7E4QGv

tux@server

private key public key

08.05 Step2 - copying ssh keys

⇒ append them to ~user/.ssh/authorized_keys on the
 machine where you want to login to authorize login as user

⇒ Tip: use >> to append to ~user/.ssh/authorized_keys

⇒ On Linux, there is also a command to copy keys to a remote
machine: ssh-copy-id

⇒ Example: ssh-copy-id -i ~/.ssh/id_rsa user@host

44 / 58

private key, public key will be only copied though!

08.05 Step3 - Logging in

To login into the remote machine use

ssh -i <private-key-file> user@host
or
ssh -i <private-key-file> host -l user

⇒ can be cumbersome to write login details always, to save
default edit ~/.ssh/config!

45 / 58

08.06 Configuration via ~/.ssh/config

⇒ can store details for a host there

46 / 58

Host cs6demo
HostName 18.206.152.69
User tux
IdentityFile ~/.ssh/tux.key

~/.ssh/config

⇒ i.e. after adding tux.key.pub tp ~tux/.ssh/authorized_keys

 on remote machine, login is as simple as ssh cs6demo!

08.06 ~/.ssh/known_hosts

⇒ SSH uses a (RSA) fingerprint to verify the identity of the
server/remote. When connecting the first time, usually a prompt
ask whether to accept the server's fingerprint.

⇒ If ssh warns about mismatch of the fingerprint, the following
scenarios might have happened:

1. the key used to generate the fingerprint changed on the server
(SSH or OS update)

2. hostname or IP belongs to different server now
3. Malicious man-in-the-middle attack

47 / 58

08.06 ~/.ssh/known_hosts

⇒ use ssh-keygen -R hostname to remove entry for hostname
from known_hosts

⇒ you can add a fingerprint using ssh-keyscan via
 ssh-keyscan -H hostname >> ~/.ssh/known_hosts

48 / 58

08.06 Summary

~/.ssh/known_hosts
⇒ used to verify the identity of remote hosts

~/.ssh/authorized_keys
⇒ keys authorized to login on this machine

~/.ssh/config
⇒ login configuration

49 / 58

08.07 More on SSH - Tracing SSH

use -v to see what's happening under the hood!

50 / 58

tux@server:~$ ssh -v user@ssh.cs.brown.edu
OpenSSH_7.6p1 Ubuntu-4ubuntu0.3, OpenSSL 1.0.2n 7 Dec 2017
debug1: Reading configuration data /etc/ssh/ssh_config
debug1: /etc/ssh/ssh_config line 19: Applying options for *
debug1: Connecting to ssh.cs.brown.edu [128.148.31.18] port 22.
debug1: Connection established.
debug1: SELinux support disabled
debug1: key_load_public: No such file or directory
debug1: identity file /home/tux/.ssh/id_rsa type -1
debug1: key_load_public: No such file or directory
debug1: identity file /home/tux/.ssh/id_rsa-cert type -1
debug1: key_load_public: No such file or directory
debug1: identity file /home/tux/.ssh/id_dsa type -1
debug1: key_load_public: No such file or directory
debug1: identity file /home/tux/.ssh/id_dsa-cert type -1
debug1: key_load_public: No such file or directory
debug1: identity file /home/tux/.ssh/id_ecdsa type -1
debug1: key_load_public: No such file or directory
debug1: identity file /home/tux/.ssh/id_ecdsa-cert type -1
debug1: key_load_public: No such file or directory
debug1: identity file /home/tux/.ssh/id_ed25519 type -1
debug1: key_load_public: No such file or directory
debug1: identity file /home/tux/.ssh/id_ed25519-cert type -1
debug1: Local version string SSH-2.0-OpenSSH_7.6p1 Ubuntu-4ubuntu0.3
debug1: Remote protocol version 2.0, remote software version OpenSSH_7.9p1 Debian-10
debug1: match: OpenSSH_7.9p1 Debian-10 pat OpenSSH* compat 0x04000000
debug1: Authenticating to ssh.cs.brown.edu:22 as 'lspiegel'
debug1: SSH2_MSG_KEXINIT sent
debug1: SSH2_MSG_KEXINIT received
debug1: kex: algorithm: curve25519-sha256
debug1: kex: host key algorithm: rsa-sha2-512
debug1: kex: server->client cipher: chacha20-poly1305@openssh.com MAC: <implicit> compression: none
debug1: kex: client->server cipher: chacha20-poly1305@openssh.com MAC: <implicit> compression: none
debug1: expecting SSH2_MSG_KEX_ECDH_REPLY
debug1: Server host key: ssh-rsa SHA256:P4ZsteVHDJ1nFV6UfH1VTK0RgRjXvBMti6IhLS+EeoI
The authenticity of host 'ssh.cs.brown.edu (128.148.31.18)' can't be established.
RSA key fingerprint is SHA256:P4ZsteVHDJ1nFV6UfH1VTK0RgRjXvBMti6IhLS+EeoI.
Are you sure you want to continue connecting (yes/no)?

08.07 More on SSH

ssh can be used to run arbitrary commands remotely

⇒ ssh cmd [param1 …]

Example:

ssh cs6server ls /home/tux

⇒ helpful to install things remotely, execute scripts, …

⇒ can use this with all the other bash tools!

51 / 58

08.07 More on SSH

⇒ X Server provides (one way for a) graphical user interface (GUI)
 on Linux

⇒ we can start programs remotely and display their GUI via
X-Server forwarding ssh -X

Example:
ssh cs6server firefox library.brown.edu

⇒ Further application: SSH can be used to tunnel ports, i.e.
exposing a secured port of a remote locally. 52 / 58

08.08 Transferring files: scp
scp [-r] [-i identity_file] [[user@]host1:]file1 ... [[user@]host2:]file2

⇒ there are many more options, however -i to specify private key is
the most useful.

⇒ scp copies files between hosts using SSH protocol

Example:

scp -r folder tux@cs6demo:/home/tux/

copies folder recursively to /home/tux/.

53 / 58

08.08 scp examples
local file to remote host

scp file.txt user@host:/remote/directory

remote file to local cwd

scp user@host:/remote/directory/file.txt .

remote host to remote host

scp tux@from_host:/home/tux/file.txt sealion@to_host:/home/sealion/

54 / 58

08.08 scp limits

⇒ scp can be slow for large files as it performs a plain copy, i.e.
read/writes all files and encrypts data via SSH

⇒ use scp -c cipher for faster encryption by selecting a fast
cipher explicitly (ssh -Q cipher to list available algorithms)

⇒ scp is not able to resume copying, show progress, ...

55 / 58

Is there another tool?

08.08 rsync

rsync = remote sync

⇒ can be used to sync directories, download files,
 resume transfers, show progress, ...

⇒ similar syntax to scp, use -e ssh to use SSH as protocol

⇒ more powerful options, e.g
--progress shows progress on transfers
--include '*.csv' include only csv files
--exclude '*.tmp' exclude tmp files
--max-size='1m' maximum size of files to be transferred
--dry-run perform dry-run, i.e. no materialization 57 / 58

End of lecture.
Next class: Thu, 4pm-5:20pm @ CIT 477

