
CŠ
Practical
System
Skills
Fall ̈̆̇9 edition
Leonhard SpieļelĒerļ
lspieļel@ēs.Ērown.edu

Reēap

Last lecture:

- More on streams
- Bash scripting

- Variables and their environments

- source script vs. ./script,sh

- Quoting: "..." vs. '...' vs. `...`

- Arithmetic expressions via ((…)) and $((…)

Today: More scripting!

2 / 62

Reēap

What's the difference between

message="hello world"

and

message = "hello world"

?

3 / 62

Reēap

What's the difference between

message="hello world"

and

message = "hello world"

?

4 / 62

variable message is
declared

command message with
1st parameter = and 2nd
parameter "hello world" is
executed

̆̍ Control ǬoǕ
CŠ Praētiēal SǛstem Skills
Fall ̈̆̇9
Leonhard SpieļelĒerļ lspiegel@ēs.Ērown.edu

̆ .̍̆̇ Return ēodes

⇒ each command, script or program exits with an integer return
code (also called exit status) in the range 0-255 (incl., i.e. 1 byte)

⇒ to explicitly exit a script, use the shell builtin exit code

⇒ 0 means success, a non-zero indicates an error.

⇒ there are some reserved exit codes frequently encountered, e.g.
 1 general errors (e.g. div by zero)
 2 misuse of shell builtins

⇒ more extensive list under http://www.tldp.org/LDP/abs/html/exitcodes.html

6 / 62

http://www.tldp.org/LDP/abs/html/exitcodes.html

̆ .̍̆̇ Return ēodes

⇒ You can access the return code of the
 last executed command via $?

Example:

7 / 62

tux@server:~$ echo 'Hello world'
Hello world
tux@server:~$ echo $?
0
tux@server:~$ cat filethatdoesnotexist.txt
cat: filethatdoesnotexist.txt: No such file or directory
tux@server:~$ echo $?
1

echo returns success

cat failed,
thus non-zero exit status/code

̆ .̍̆̇ Eǚeēutinļ ēommands ēonditional on others

⇒ What is happening when we run
 echo "hello";cp;chown /root ?

8 / 62

sealion@server:~$ echo "hello";cp;chown /root
hello
cp: missing file operand
Try 'cp --help' for more information.
chown: missing operand after ŧ/rootŨ
Try 'chown --help' for more information.

commands are executed after
each other, cp and chown fail
and print to stderr

̆ .̍̆̇ Eǚeēutinļ ēommands ēonditional on others

⇒ && and II allow to execute commands depending on
 each others exit status

⇒ cmd1 && cmd2 cmd2 is executed iff cmd1 returned 0

⇒ cmd1 || cmd2 cmd2 is executed iff cmd1 returned non-zero

Example:

echo "hello" || echo "world" # <= prints hello

echo "hello" && echo "world" # <= prints hello and world

9 / 62

̆ .̍̆̇ More on && and ||
⇒ execution occurs from left to right (left associative),
 with || and && have same precedence, i.e. read from left to right
 Examples:

 true && echo 'true always returns $?=0' >&2 || echo 'not printed'
 # stderr will receive 'true always return $?=0'

 echo "A " && echo "B " && false || echo "C"
 # output will be A NL B NL C (NL = new line)

=> cmd may be a pipe!
 e.g. cat file.txt | head -n 5 && echo "pipeline done"

10 / 62

̆ .̍̆̇ A lonļer eǚample
touch /file.txt && echo "succeeded at /" || \

touch /usr/file.txt && echo "succeeded at /usr" || \

touch /usr/local/file.txt && echo "succeeded at /usr/local/" || \

touch $HOME/file.txt && echo "succeeded to store at home" || \

echo "failed to store the file in /, /usr, /usr/local or /"

11 / 62

you can use \ to break up a
command over multiple lines
⇒ that's why \ needs to be
escaped as \\

⇒ tries to create a file at /, /usr, /usr/local. However, user has (typically) no rights to

do so. Finally, file can be stored at $HOME

⇒ Note: you can silence warnings using e.g. 2> /dev/null on each command!

̆ .̍̆̇ Praētiēal eǚample Ļor && and II

12 / 62

apt-get update &&

apt-get install -y openjdk-8-jdk &&

apt-get install -y openssh-server &&

wget http://apache.cs.utah.edu/spark/spark-2.4.0/spark-2.4.0-bin-hadoop2.7.tgz &&

tar xf spark-2.4.0-bin-hadoop2.7.tgz &&

mkdir -p /usr/local/spark &&

chown -R ubuntu /usr/local/spark &&

mv spark-2.4.0-bin-hadoop2.7/* /usr/local/spark &&

rm -rf spark-2.4.0-bin-hadoop2.7* &&

echo "export SCALA_HOME=/usr/local/scala" >> $HOME/.bashrc ||

echo "failed to install spark" && exit 1

part of a setup script to install
Apache Spark

this starts execution of the
following command in case
any of the preceding
commands faileddisplay message and exits

script with error return code

Compound ēommands

commands involving commands!

̆ .̍̆̈ IĻ statement

14 / 62

man Ēash:

if list; then list; [elif list; then list;] ... [else list;] fi

list ⇒ a list of words (e.g. a command with parameters)

if TEST
then

COMMAND
fi

if TEST
then

COMMAND1
else

COMMAND2
fi

execute
COMMAND if
exit code of
TEST is 1

execute
COMMAND1 if exit
code of TEST is 1, if
exit code is
non-zero execute
COMMAND2

̆ .̍̆̈ IĻ statement - eǚample

15 / 62

You can use tabs to format input,
or ; to write parts of the command
on a line

#!/bin/bash

if chown sealion:sealion /home/tux; then echo "took over Tux's igloo"
else
 echo "attempt to take over Tux's igloo failed :("
fi

⇒ Sealion has no root privileges, thus owning Tux's home dir fails.

HoǕ to Ǖork Ǖith ǔariaĒles, ǫles?
HoǕ to ēheēk permissions?

̆ .̍̆̈ IĻ statements - test and [

⇒ test or [are commands which allow to test for a condition and
return 0 or non-zero exit status

test EXPRESSION

[EXPRESSION]

⇒ status is determined by EXPRESSION

⇒ note the whitespace after test and [!
17 / 62

Both test and [are programs
stored typically in
/usr/bin/test and /usr/bin/[

last argument should be]

̆ .̍̆̈ iĻ statements - Ēasiē tests

18 / 62

EXPRESSION Description

! EXPRESSION The EXPRESSION is false.

-n STRING The length of STRING is greater than zero.

-z STRING The length of STRING is zero (i.e. it is empty)

STRING1 = STRING2 STRING1 is equal to STRING2

STRING1 != STRING2 STRING1 is not equal to STRING2

INTEGER1 -eq INTEGER2 INTEGER1 is numerically equal to INTEGER2

INTEGER1 -gt INTEGER2 INTEGER1 is numerically greater than INTEGER2

INTEGER1 -lt INTEGER2 INTEGER1 is numerically less than INTEGER2

̆ .̍̆̈ iĻ statements - eǚamples

19 / 62

#!/bin/bash

true ; echo $? # => 0
false ; echo $? # => 1

[! true] ; echo $? # => 1

[-n "hello world"] ; echo $? # => 0

EMPTYVAR=
[-z $EMPTYVAR] ; echo $? # => 0

["abc" = "ABC"];echo $? # => 1

[20 -gt 10]; echo $? # => 0

eǚample.sh !!! Note that 0 is success !!!

-n checks for non-zero string
-z checks for empty/zero string

̆ .̍̆̈ iĻ tests - ǫles & permissions

20 / 62

EXPRESSION Description

-e FILE FILE exists.

-d FILE FILE exists and is a directory.

-f FILE FILE exists and is a regular file

-L FILE FILE exists and is a symbolic link

-r FILE FILE exists and the read permission is granted.

-w FILE FILE exists and the write permission is granted.

-x FILE FILE exists and the execute permission is granted.

Note: permission checks for the user who executes the script.

̆ .̍̆̈ iĻ tests - ǫle test eǚamples

21 / 62

sealion@server:~$./test_files.sh
/tux does not exist
sealion has no write permissions to /etc/profile

#!/bin/bash

[-e /tux] && echo "/tux exists" || echo "/tux does not exist"

if [-w /etc/profile]; then
 echo "$USER has write permissions to /etc/profile"
else
 echo "$USER has no write permissions to /etc/profile"
fi

test_files.sh

̆ .̍̆̈ usinļ ͛͛ … ͜͜ Ļor tests
⇒ Last lecture: ((…)) and $((…))

⇒ ((…)) equivalent to let

⇒ ((expression)) evaluates expression, $((expression)) evaluated

expression and returned its result

⇒ man bash: If the value of expression is non-zero,

 exit status of ((expression)) is 0, otherwise 1.

22 / 62

̆ .̍̆̈ Eǚample Ļor ͛͛ … ͜͜ and tests

23 / 62

sealion@server:~$ ((10 > 20)); echo $?
1
sealion@server:~$ ((42 == 42)); echo $?
0
sealion@server:~$ ((7 * 3 > 20)); echo $?
0
sealion@server:~$ x=30
sealion@server:~$ ((x * x > 500)); echo $?
0
sealion@server:~$ if ((10 < y && y < 30));then echo "y in (10, 30)";fi
y in (10, 30)

if exit status is 0, then
execute command after
then keyword

̆ .̍̆̈ DiĻĻerenēe to $͛͛...͜͜

⇒ What is happening when we execute
 $((3+4)); echo $?

7: command not found

127

24 / 62

special exit status if
command was not found

̆ .̍̆̉ ComĒininļ tests Ǖith && and II

⇒ can use && and II to combine multiple tests

⇒ what about a logical expression like ?

⇒ we can use parentheses to group tests!
 Example:

 x=25
 (((x > 20)) || ((x < -20))) && ((x % 5 == 0))
 echo $? # <= will yield 0!

25 / 62

̆ .̍̆̊ Groupinļ ēommands

How does it work under the hood?

⇒ we already had in the last lecture $(cmd) (equivalent to `cmd`)
to execute cmd and return its stdout

⇒ in fact (list) with list being a list of commands
(separated by ;), opens up a new shell and returns (as exit status)
the exit status of the last command
Example:

(true;false); echo $? # => prints 1
(true;true); echo $? # => prints 0 26 / 62

̆ .̍̆̊ eǚample

true && (true || false)

27 / 62

What is happening?
1. true has exit status 0
2. && checks $?, last exit status is 0 so execution is continued
3. (...) opens up a new subshell

a. true yields exit status 0
b. || checks the status, it was 0 so false is not executed

4. exit status of subshell is 0 (status of true)
5. $? will have 0 (the status taken from the subshell)

̆ .̍̆̉ ProĒlems Ǖith test/[

[! ! false]
⇒ complains, too many arguments

[$x > 0] && [$x < 100]
⇒ complains: 100 no such file or directory

[true && (true && false)]
⇒ complains: syntax error near unexpected token]

The issue: command syntax of [/ test feels rather unintuitive
28 / 62

can be fixed by using `true && …`

should have used
-gt and -lt instead of
> and <!

no nesting

̆ .̍̆̉ Introduēinļ Ēash's [[eǚpression]]

[[expression]]

is an extension of bash, allowing to write expressions similar to
((expression)).

⇒ i.e. can use parentheses, !, &&, || and all of the switches of [/test

Example:

[[($PREFIX==/usr/local && -w $PREFIX) || $PREFIX=$HOME/.local]]

29 / 62
can use = or == to compare strings

̆ .̍̆̉ Eǚample
[[($PREFIX == /usr/local && -w $PREFIX) || \

 $PREFIX == $HOME/.local]]

vs.

([$PREFIX = /usr/local] && [-w $PREFIX]) || \

 [$PREFIX = $HOME/.local]

30 / 62

can read expression like in many other
programming languages

always think of exit statuses
rather than conditional
expressions

̆ .̍̆̉ [ǔs [[...]]

⇒ when using test/[whitespace is important!

⇒ when using [[…]], you may delete whitespace

[[($PREFIX == /usr/local && -w $PREFIX) || \

 $PREFIX == $HOME/.local]]

is the same as

[[($PREFIX==/usr/local&&-w $PREFIX) || $PREFIX==$HOME/.local]]

31 / 62

whitespace required
here to end [[whitespace required

here to separate
tokens

̆ .̍̆̊ Comparison [ǔs. [[

[⇒ use eq, ne, lt, gt for comparison

[[⇒ use ==, !=, <, > for comparison,
 can use &&, ||, (...) for combining

32 / 62

̆ .̍̆̋ When to use Ǖhat?

string and file checks ⇒ use [or [[…]]

numbers ⇒ use ((…))

33 / 62

ArraǛs

̆ .̍̆̌ ArraǛs

35 / 62

⇒ bash supports one-dimensional arrays

⇒ No support for nested, multi-dimensional arrays.

=> declare an array via

ARRAY=(100 200 300 400 500)

EMPTYARRAY=()

whitespace to
separate elements

array with zero
elements declared
via ()

̆ .̍̆̌ ArraǛs - read/Ǖrite element aēēess

⇒ access n-th element of ARRAY via ${ARRAY[n]}

⇒ arrays in bash are 0-indexed

⇒ to set the n-th element of ARRAY to value, use
 ARRAY[n]=value

36 / 62

̆ .̍̆̌ ArraǛs - retrieǔinļ all elements/indiēes

What is happening when we run the following code?

A=(1 2 3 4 5)

A[10]=42

⇒ many programming languages would throw an out-of-bounds
error. bash allows this, because arrays are per default indexed with
numbers as keys.

37 / 62

̆ .̍̆̌ ArraǛs - retrieǔinļ all elements/indiēes
⇒ You can use ${!ARRAY[*]} or ${!ARRAY[@]} to retrieve the
indices/keys of ARRAY

Example:

38 / 62

tux@server:~$ ARRAY=("abc" 10 "3.141" 42)

tux@server:~$ ARRAY[19]=19

tux@server:~$ echo ${ARRAY[@]}

abc 10 3.141 42 19

tux@server:~$ echo ${!ARRAY[@]}

0 1 2 3 19

̆ .̍̆̌ ArraǛs - diĻĻerenēe ĒetǕeen @ and *

⇒ there is a small but subtle difference between @ and * for arrays:

⇒ Let ARRAY=(abc 42)

"${ARRAY[@]}" gets expanded to "abc" "42" ⇐ two words!

"${ARRAY[*]}" gets expanded to "abc 42" ⇐ one word!

39 / 62

̆ .̍̆̍ ArraǛs - numĒer oĻ elements

⇒ number of elements in ARRAY (i.e. its size) can be
 computed using ${#ARRAY[@]} or ${#ARRAY[@]}

Example:

40 / 62

tux@server:~$ a=(1 3 4 5 61 0 9 2)

tux@server:~$ echo ${#a[@]}

8

̆ .̍̆̍ ArraǛs - appendinļ elements

⇒ you can append another array to an array using +=(...)

Example:

41 / 62

tux@server:~$ a=(1 2 3 4)

tux@server:~$ b=(6 7)

tux@server:~$ a+=(5)

tux@server:~$ echo ${a[@]}

1 2 3 4 5

tux@server:~$ a+=(${b[@]})

tux@server:~$ echo ${a[@]}

1 2 3 4 5 6 7

note that there is no
whitespace before +=

̆ .̍̆̍ ArraǛs - sliēinļ

⇒ you can get a subarray via

 ${ARRAY[@]:2:3}

Example:

42 / 62

tux@server:~$ a=(1 2 3 4 5 6 7 8 9)

tux@server:~$ echo ${a[@]:2:3}

3 4 5

first number is the starting
index (incl.), second number
the number of elements of the
slice

̆ .̍̆̍ Readinļ in arraǛs ǔia read

⇒ you can use read -a to read words into an array!

⇒ for more options, take a look at http://linuxcommand.org/lc3_man_pages/readh.html

43 / 62

http://linuxcommand.org/lc3_man_pages/readh.html

loops

̆ .̍̆̎ Ļor loops

45 / 62

for name [[in [word ...]] ;] do list ; done

⇒ iterates over a list of words, defining in each run a variable name

Example:

tux@server:~$ for x in 1 2 3 4; do echo $x; done

1

2

3

4

̆ .̍̆̎ Ļor loops oǔer arraǛs

46 / 62

tux@server:~$ for x in ${a[*]}; do echo $x; done
abc
42
X
tux@server:~$ for x in ${a[@]}; do echo $x; done
abc
42
X
tux@server:~$ for x in "${a[@]}"; do echo $x; done
abc
42
X
tux@server:~$ for x in "${a[*]}"; do echo $x; done
abc 42 X

@ splits into words, whereas *
doesn't

̆ .̍̆̎ Ļor loops - more details

⇒ seq is a command to quickly create a range of numbers
⇒ man seq:

seq [OPTION]... LAST
seq [OPTION]... FIRST LAST
seq [OPTION]... FIRST INCREMENT LAST

47 / 62

Example:

tux@server:~$ echo `seq -2 4`

-2 -1 0 1 2 3 4

tux@server:~$ a=(`seq 3 3 30`)

tux@server:~$ echo ${a[@]}

3 6 9 12 15 18 21 24 27 30

̆ .̍̆̎ Ļor loops usinļ arithmetiē eǚpressions

⇒ there is a second version of for using arithmetic expressions,
similar to many other C-like programming languages

⇒ Details from man bash:

for ((expr1 ; expr2 ; expr3)) ; do list ; done

First, the arithmetic expression expr1 is evaluated according to the rules described
below under ARITHMETIC EVALUATION. The arithmetic expression expr2 is then evaluated
repeatedly until it evaluates to zero. Each time expr2 evaluates to a non-zero value, list
is executed and the arithmetic expression expr3 is evaluated. If any expression is omitted,
it behaves as if it evaluates to 1. The return value is the exit status of the last command
in list
that is executed, or false if any of the expressions is invalid.

48 / 62

̆ .̍̆̏ Ǖhile and until loops

⇒ bash also provides while and until loops, from man bash:

while list-1; do list-2; done
until list-1; do list-2; done

The while command continuously executes the list list-2 as long as the last
command in the list list-1 returns an exit status of zero. The until command
is identical to the while command, except that the test is negated: list-2 is
executed as long as the last command in list-1 returns a non-zero exit
status. The exit status of the while and until commands is the exit status
of the last command executed in list-2, or zero if none was executed.

49 / 62

based on exit codes again!

̆ .̍̇̆ Eǚitinļ loops

⇒ as part of the body of the loop, you can use

break [n] ⇒ leave loop, optional parameter [n] specifies
 how many loops shall be exited,

 n must be larger than 1
continue [n] ⇒ skip to loop condition, again with

 optional parameter n

⇒ to quit the script, you may also use exit [status_code]

50 / 62

Ļunētions

̆ .̍̇̇ Funētions

52 / 62

⇒ you can define functions in bash, with 2 options:

name () compound-command [redirection]

function name [()] compound-command [redirection]

⇒ function is called/invoked like any other command, e.g.
 mul 3 4 for a function mul

̆ .̍̇̇ Funētions - eǚample

53 / 62

#!/bin/bash

you can declare a function using () syntax
mul () {
 # use echo to print to stdout,
 # and then command substitution to get a return value
 echo $(($1 * $2))
}

a=3
b=4
res=$(mul $a $b)
echo "$a * $b = $res" # should be 12

other option is to use syntax involving function keyword
function hw() {
 echo "$0: Hello world"
}

hw # prints functions.sh: Hello world

Ļunētions.sh

tux@server:~$./functions.sh
3 * 4 = 12
./functions.sh: Hello world!

parameters for functions are
passed like to a script in
special variables
${n} for the n-th parameter.
$0 is the file name!

̆ .̍̇̇ Groupinļ ēommands ǔia {}

⇒ in the previous example, we've seen {} to group several
commands. This in fact works generally too:
⇒ { list; } allows to execute several commands (list) to be
executed in the current shell context

Example:

54 / 62

{
 echo "hello" 1>&2
 echo "world"
} > out.txt 2>&1

{echo "hello" 1>&2; echo "world"; } > out.txt 2>&1

prints hello to stderr, world to stdout.
The grouped commands stdout is
redirected to out.txt, stderr to stdout.

the same, just in one line

̆ .̍̇̈ a note on ͛list͜ ǔs. {list; }

55 / 62

tux@server:~$ a=1; (a=2; echo "inside: a=$a"); echo "outside: a=$a"

inside: a=2

outside: a=1

tux@server:~$ a=1; { a=2; echo "inside: a=$a"; }; echo "outside: a=$a"

inside: a=2

outside: a=2

note the whitespace, else
syntax errors will happen!

⇒ (...) opens a subshell, i.e. won't override variables in the environment of the parent

⇒ {...} executes within the current context, i.e. may override variables

diētionaries / assoēiatiǔe arraǛs

̆ .̍̇̉ Diētionaries / assoēiate arraǛs

57 / 62

⇒ indexed bash arrays allow for integer keys only, e.g.
tux@server:~$ a=(1 2 3)

tux@server:~$ a[hello]=90

tux@server:~$ echo ${!a[@]}

0 1 2

tux@server:~$ echo ${a[@]}

90 2 3

⇒ bash has support for non-integer keys as well

⇒ in fact, if keys/indices are not specified explicitly,
 bash assumes integers

first element gets weirdly
overwritten

̆ .̍̇̉ Diētionaries

⇒ similar to arrays, there is also an inline syntax to declare a dict

 animals=([dog]=woof [cow]=moo)

⇒ element read access: ${animals[dog]}

⇒ element write access: animals[dog]="woof woof"

⇒ ${animals[*]}, ${animals[@]}, ${!animals[@]},
${!animals[*]} work as well.

58 / 62

specify through [key] the key! If none is given,
bash uses integers as default.

̆ .̍̇̉ alternatiǔe sǛntaǚ: deēlare

⇒ builtin declare allows to define variables with attributes
 declare [-aAfFgilnrtux] [-p] [name[=value] ...]

59 / 62

declare VAR declares an empty VAR (same as VAR=)

declare -a ARRAY declares an empty Array(same as ARRAY=())

declare -A ARRAY declares an empty associative array

declare -r VAR makes VAR read-only or creates new read-only VAR

̆ .̍̇̉ Diētionaries - eǚample

60 / 62

sealion@server:~$ declare -A animals

sealion@server:~$ animals[cow]=moo

sealion@server:~$ animals[dog]=woof

sealion@server:~$ echo ${animals[*]}

woof moo

sealion@server:~$ echo ${!animals[*]}

dog cow

sealion@server:~$ echo ${animals[dog]}

woof

sealion@server:~$ echo ${animals[cow]}

moo

̆ .̍̇̉ Cheēkinļ Ǖhether a keǛ eǚists:

declare -A dict

dict[USDINEUR]=1.08

[${dict[USDINEUR]}]; echo $? ⇒ if key exists, returns 0!

[${dict[USDINCAD]}]; echo $? ⇒ returns 0

61 / 62

End of lecture.
Next class: Tue, ̊pm-̋:20pm @ CIT ̊77

