Practical
System
Skills

Fall 2019 edition
L.eonhard Spiegelberg
ISpiegel@cs.brown.eal

Errata

LectureOl: Slide 35

Welcome to different standards...

*NIX'is not *NIX...

Mac OS X: 1s -G displays colors

GNU/Linux: 1s --color

3/59

Lecture 02: (Slide 20) GNU/Linux vs. BSD

cp -R folder/

cwd
foIc'ier ! [a.txt][subfolder]
N
[a.txt][subfolder] S [A][subfolder] [b.txt][.C.txt]

N N
[b.txt][.C.txt] [b.txt][.C.txt]

Mac OS X/BSD: = the trailing / in cp is accounted for

GNU/Linux: = the trailing / in cp is not accounted for,
however to get BSD behavior use cp -R folder/* .

4/59

Recap

05.07 Recap - File permissions

Unix has file permission to Octal Binary String Description
retrict access .

0 000 -——= Nno permissions
Permissions can be changed 1 001 Cx execute only

using chmod

= symbolic mode 2 010 —w- write only

= numeric mode

3 011 -Wx write and execute

4 100 r—- read only

5 101 r—x read and execute

6 110 rw- read and write

7 111 rwx read, write and execute

chmod u=rw,g=rx,o0= file.txt = chmod 650 file.txt
6/59

05.07 Recap - Streams & Pipes

standard streams: 0 = stdin, 1 = stdout, 2 = stderr

= can connect streams of commands via pipe operator |

= >, <, >>, << to redirect streams to/from files

7159

More on stream redirection

05.08 Redirecting streams

0 > terminal

1 > terminal

2 — terminal

When the shell is started, it sets up the 3 standard file descriptors
(O=stdin, 1=stdout, 2=stderr) and redirects them to the terminal

9/59

05.08 Redirecting streams

0 > terminal

1 p stdout.txt cmd > stdout.txt 2> stderr.txt

2 — stderr.txt

1> (or >) to redirect stdout, 2> to redirect stderr

10/59

05.08 Redirecting streams

0 > terminal

1 out.txt cmd &> out.txt
—_
/
2

&> out.txt to redirect both stdout and stderr to out.txt

11/59

05.08 Redirecting streams to file descriptors

)
0 > terminal
-
)
1 > out.txt cmd > out.txt 2>&1

2 \
. Note the order here! First, redirect stdout to

the file out.txt. Then redirect stderr to stdout.
If 2>&1 > out.txt was used, stderr would print
to the terminall!

&n references file descriptor n.
= can use this to redirect stderr to stdout!

12/59

05.08 Redirecting streams | tee

terminal

out.txt

1
—
)

2

|

Why is this useful?
= You can log a command and see its output
while it's running.

cmd 2>&1 | tee out.txt

Can we redirect streams to both the terminal and a file?

= tee file reads from stdin and writes to stdout and file

= use tee -a filetoappendto file

13/59

CS6 Practical System Skills
Fall 2019

Leonhard Spiegelberg Ispiegel@cs.brown.edu

06.01 Shells

User
sl;:ecre ! Command
T | | Lexical analysis Expanson. | = Socion (is. cat,
wn and parse Builtins grep, etc.)
Y
Kernel
b Kernel

15/59

06.01 Shells

On *NIX systems, there are multiple shells available

shell = CLI to the operating system

= pick your favourite shell

= each has a different syntax
and unique features

= In CS6 we'll learn bash

sh Bourne shell 1977
ksh Korn shell 1983
csh C shell 1978
tcsh Tenex C shell 1983
bash Bourne again shell | 1989
zsh Z shell 1990
fish friendly interactive 2005

shell

more on the history of shells: https://developer.ibm.com/tutorials/I-linux-shells/

16 /59

06.02 BASH, the bourne again shell

BASH

THE BOURNE-AGAIN SHELL

= widely deployed, de facto standard to write scripts
= documentation under man bash

= typically stored under /bin/bash or /usr/bin/bash

17 /59

06.02 Why scripting?

Shell scripts allow to create new commands & save us a lot of time

= automate daily tasks

= system administration can be also automated
(e.g., installation of dependencies,
technical users, configuration)

= often they are required to deploy services
(wrapper scripts, startup scripts)

18 /59

06.03 Writing scripts - the basics

= scripts are text files, simply create and edit them using e.g. vim
= typical extension for shell scripts: . sh

= to execute a script script. sh, set read&execute permissions (i.e. >= 500) and
run it via an interpreter (i.e. a shell), e.g. bash script.sh

= Alternative: you can add a shebang (or bang) line to script.sh,
and execute it then like an executable via . /script.sh

If the first line of script.sh is formatted as
#!<interpreter>

#!/bin/bash <— ./script.sh will be the same as
<interpreter> script.sh

19/59

06.03 Writing scripts - the basics

= everything after # is treated as a comment

hw.sh

#!/bin/bash

script

a first shell

clear # reset screen 44—
echo "Hello world"

\

chmod 500 hw.sh > Jhwsh > Hello world

\

clears terminal screen

prints Hello world to stdout

20/59

06.03 Multiple commands in one line

= multiple statements/commands can be written in one line by

separating them using ;

Example:

r

cd /usr/bin;ls;pwd =—

\

is the same as
cd /usr/bin
1ls

pwd

2117589

06.03 source

= with the source command a script may be executed within the
current shell.

= helpful, if you want to "save" multiple commands in a file and
execute them.

22159

06.04 Variables

Define variables using

VARIABLE=value

= variable names must consist of alphanumeric character
or underscores () only
= variable names are case sensitive
= you can define a NULL variable (i.e., no value), using VARIABLE=

= many people use a capital letter naming convention for bash variables

2317589

06.04 Variables

To print or access the value of a variable, use $

Examples:
DEST=/home/tux

cd SDEST
MESSAGE="hello world"

echo SMESSAGE

quotes allow for whitespace here!

24159

06.04 Variables and environments

= when variables are defined using VARIABLE=value, they are
added to the local environment of the executing process

= E.g., if we type VARIABLE=value directly in the shell,
then VARIABLE is added to the local environment of the shell

= |f we write VARIABRLE=value in a script, it is added to
the local environment of the script during execution

25/589

06.04 Shell variables and environment variables

= when a script is invoked, bash will export its
global environment to the script.

= to add a variable to the global environment, use
export VARIABLE
or export VARIABLE=value

= bash defines a set of predefined variables,

called shell variables which are always exported.

= to list the global environment, run printenv

26/59

06.04 Shell variables

Some useful shell variables (many more are available):

HOME the path of the home directory
USER name of the user

SHELL path to the shell

PWD current working directory

= e.g. cd SHOME will go to the home directory

27159

06.04 Exporting variables

export var

shell
local
environment
global
environment H-

script
P local
environment
' global
________ +> environment

28 /59

06.04 Importing variables

source script

\
shell S .
' local ; - t ™
. environment | Sl local
| i environment
" | global » :
. | environment | TPt T T T T
- J
A J

Allows to override any variables (incl. the

shell ones)! Don't blindly source a script!

29/59

06.04 In a nutshell: source vs. export

= With export VARIABLE=value yOU can
pass a variable to a script.

= with source script.sh you can
add variables to the shell's environment.

30/59

Operations on variables

31

06.05 Integer operations

= basic arithmetic operations may be executed using

let expression
, > semantically the same
or ((expression))

or S ((expression))

= let expression and ((expression)) evaluate
the provided expression using bash's rules

regarding arithmetic evaluation.

321759

06.05 Integer operations

= $ ((expression)) evaluates the expression and

performs then substitution of the result, i.e. returns the result.

= use arithmetic evaluation for integers only!

(no floating point support in bash)

33759

06.05 Arithmetic evaluation - operators

- 4+ unary plus/minus
*x exponentiation
* /% multiplication, division, remainder(modulo)
+ - (binary) addition, subtraction
~ & " bitwise negation, AND, exclusive OR and OR
<< >> left/right bitwise shifts

! logical negation

<= => < > comparison operators

= = equality / inequality

&& || logical AND, logical OR

34759

06.05 Arithmetic evaluation

var++ variable post-increment or
var-- post-decrement

++var variable pre-increment and
--var pre-decrement

= *= /: %: -|-: p—

<L= >>= &=

assignment operators

exprA?exprB:exprC

conditional operator (i.e. if exprA then
return exprB else return exprC)

exprl, expr2

list operator (more next lecture)

= can use parentheses, precedence like in C

35/59

06.05 Arithmetic evaluation - example

x=42
echo S$x #=> 42

let x=x+42
echo $x #=> 84
Note: within (()) orletors(()),

fuse to alloy for uhitespace the variables are referenced using their
echo $x #=> 80 name var, not by $var.

((x--))
echo S$x #=> 79 _ y

can use whitespace within (()) here
((x *= 7)) #=> 553
echo $x
let "a=3" let expression = executes expression, but returns no result
let "b = 4"
((expression)) = executes expression, but returns no result

let "c = a**2 + b **2"
echo $c _

$((expression)) = executes expression and returns result
clamp to [10, ...)
use S(()) to get the result

echo $((¢ >10 ?2c : 10)) #=> 25 36/59

06.06 String operations

= we can use variables as part of strings, e.qg.

cd SHOME/.local/bin will change the directory to
/home/tux/.local/bin if HOME=/home/tux

Problems:

What is Savariableinasentence?

How can we define a variable with content SHOME?
What about whitespace/tokenization?

37159

06.06 Quoting

double quotes ". . ." = perform string interpolation
single quotes '...' = treat characters within literally
backticks " ... = treat ... as command and return its stdout

= all details available under man bash

38/59

06.06 Quoting - single quotes:'...."

= single quotes treat each character within them as literal value.

= However, ' can't be contained within "'

Examples:

echo 'Svariables are not substituted'
echo 'All sorts of things are ignored in single quotes, like $ & * ;
MESSAGE="'hello world!"

echo SMESSAGE

39/59

06.06 Quoting - single quotes ..

= |.e. single quotes preserve ALL chars except '

= can use this for multiline strings, e.qg.

sealion@server:~S echo 'hello
> world'
hello

world
40/59

06.07 Quoting - double quotes

= double quotes " " preserve literal value (incl. newline!) of
characters within them, except for $, *, \ and !. They can be
escaped using \, i.e. \$ \' \!

= $ performs parameter/variable expansion
= ° performs command substitution
= \ Is the escape character

= | performs history expansion

41/59

06.07 Quoting - double quotes

Examples: | |
with {} the variable

MESSAGE="hello world" cache_dir is expanded

echo SMESSAGE

N
echo "message is: $MESSAGE" bash tries to get the value
of cache_dirimages.
echo "message is: S${MESSAGE}\!" = variable does not
exists, hence result here
will be
CaChe_dir:- /cache/ images will be saved to
- Y,

echo "images will be saved to ${cache_dir}imagei:////

echo "images will be saved to Scache dirimages"
42159

06.08 The $ character

= $ performs parameter expansion, command substitution or
arithmetic expansion

= S${parameter} is substituted by the value of parameter
(if parameter exists, else the empty string)

= $ (command) executes command in a subshell
and returns its stdout

= S can do a lot more, cf. man bash

43 /59

06.08 Backticks

“cmd IS a shortcut for $ (cmd)

Examples:

|

echo "ls returns 1s
echo "ls returns $(1ls)"

echo "the current user is S (whoami) (should be
S{USER}) "

44 /59

06.08 Combining the different quote types

= we can combine the different quote types

Examples:

echo 'To escape '""'"' simply surround it with "'

echo 'result of 1s without newlines is: ' 1ls

45/59

06.09 A note on whitespace and quotes

= quoting just allows us to write special chars,
but the values are still passed as words r ~

Example:

PARAMS="file.txt dest"

cp SPARAMS
cp "SPARAMS"
cp "S{PARAMS}"

cp 'SPARAMS'

id
#

#

<= expands
<= expands
<= expands

<= expands

to

To

to

To

these commands will
raise an error to stderr:
cp: missing destination
file operand after ...

cp dest src!
cp dest\ src!
cp dest\ src!

cp \SPARAMS
46 /59

06.09 Quoting is just a way to specify strings!

Another example:

PARAMS="wordl word2"
echo PARAMS # <= output will be PARAMS

echo SPARAMS # <= output will be the wordl word?2

47159

Passing input

06.09 Passing input to scripts

We can pass data in different ways to a script:

as parameters

via stdin

via (exported) environment variables
via an interactive prompt

> =

49 /59

06.09 Passing parameters

./script.sh paraml param?2 param3 .. param20

= access the nth parameter via ${n} in a script.

= $0 (short for ${0}) holds the command name (here . /script.sh)
=> $1 is param1

=> ${20} is param20

=> ${100} is NULL/empty string (not set)

50/59

06.09 stdout, stderr, stdin revisited

= within scripts it may be sometimes useful to access
stdout, stderr, stdin as files

= bash creates 3 special files for the 3 streams
to which a command may write to or read from:

stdout /dev/stdout
stderr /dev/stderr
stdin /dev/stdin

Example: echo 'Hello world' > /dev/stdout

51/59

06.09 stdin

can use either cat for this and stdin.sh

access stdin indirectly 41 /bin/bash

STDIN=S (cat)

echo "stdin via cat: $STDIN"
STDIN="head -n 1 /dev/stdin"
echo "header: $STDIN"

STDIN=S (cat)

or use the special file
/dev/stdin

execute this script via
/stdin.sh < file.txt

\ J 52 /59

06.09 Environment variables

= you can access variables that have been exported in the parent

shell, via $VARIABLE

Example:

info.sh

#!/bin/bash

echo "SUSER started
this script via
SSHELL"

53759

06.09 Interactive prompt

= use read -p PROMPT VARIABLE to display PROMPT, wait for
user to type input and save it to VARIABLE.

Example:
4 N\
There are multiple ways
prompt.sh to customize the
prompt, e.g. for
#!/bin/bash passwords (-s) etc.
L = check man bash
J

echo "what 1s your favourite animal?"
read -p '> ' ANSWER
echo "It's a S{ANSWER}, so cool!"

54 /59

06.09 Interactive prompt - multiple variables

= read -p PROMPT VARl VAR2 VAR3 will issue a prompt,
perform word splitting on the received input and fill in the variables.

Example:

prompt_multiword.sh

#!/bin/bash

echo "Please write a sentence"
read -p '> ' WORD1 WORDZ WORD3
echo 'First word: '""SWORD1"'
Second word: '""SWORD2"'

Third word: '"SWORD3"

55/59

I ——— o et ¢ - _—

So long, and thanks for all the fish.

Next Lecture:

= more advanced variable/parameter expansions
= control structures

- conditional statements (if)

- loops (while/for)

= arrays & dictionaries

57159

Homework 2 out today!

= get started early!
= the first scripting homework
= if you're stuck, get help

= man bash is your friend.

58 /59

End of lecture.
Next class: Thu, 4pm-5:20pm @ CIT 477

