
CS6
Practical
System
Skills
Fall 2019 edition
Leonhard Spiegelberg
lspiegel@cs.brown.edu

3 / 59

Mac OS X: ls -G displays colors

GNU/Linux: ls --color

Welcome to different standards…

*NIX is not *NIX...

4 / 59

Mac OS X/BSD: ⇒ the trailing / in cp is accounted for

GNU/Linux: ⇒ the trailing / in cp is not accounted for,
 however to get BSD behavior use cp -R folder/* .

cp -R folder/ .

folder

cwd

subfoldera.txt

b.txt .c.txt

cwd

folder

cwd

subfoldera.txt

b.txt .c.txt

cwd

subfoldera.txt

b.txt .c.txt

6 / 59

Octal Binary String Description

0 000 --- no permissions

1 001 --x execute only

2 010 -w- write only

3 011 -wx write and execute

4 100 r-- read only

5 101 r-x read and execute

6 110 rw- read and write

7 111 rwx read, write and execute

chmod u=rw,g=rx,o= file.txt ⇒ chmod 650 file.txt

Unix has file permission to
retrict access

Permissions can be changed
using chmod
⇒ symbolic mode
⇒ numeric mode

standard streams: 0 = stdin, 1 = stdout, 2 = stderr

⇒ can connect streams of commands via pipe operator |

⇒ >, <, >>, << to redirect streams to/from files

7 / 59

9 / 59

When the shell is started, it sets up the 3 standard file descriptors
(0=stdin, 1=stdout, 2=stderr) and redirects them to the terminal

0

1

2

terminal

terminal

terminal

10 / 59

1> (or >) to redirect stdout, 2> to redirect stderr

0

1

2

terminal

stdout.txt

stderr.txt

cmd > stdout.txt 2> stderr.txt

11 / 59

&> out.txt to redirect both stdout and stderr to out.txt

0

1

2

terminal

out.txt cmd &> out.txt

12 / 59

&n references file descriptor n.
⇒ can use this to redirect stderr to stdout!

0

1

2

terminal

out.txt cmd > out.txt 2>&1

Note the order here! First, redirect stdout to
the file out.txt. Then redirect stderr to stdout.
If 2>&1 > out.txt was used, stderr would print
to the terminal!

Can we redirect streams to both the terminal and a file?

⇒ tee file reads from stdin and writes to stdout and file

⇒ use tee -a file to append to file
13 / 59

0

1

2

terminal

out.txt cmd 2>&1 | tee out.txt

Why is this useful?
⇒ You can log a command and see its output
while it's running.

06
CS6 Practical System Skills
Fall 2019
Leonhard Spiegelberg lspiegel@cs.brown.edu

15 / 59

On *NIX systems, there are multiple shells available

shell = CLI to the operating system

⇒ pick your favourite shell
⇒ each has a different syntax
 and unique features
⇒ In CS6 we'll learn bash

16 / 59

sh Bourne shell 1977

ksh Korn shell 1983

csh C shell 1978

tcsh Tenex C shell 1983

bash Bourne again shell 1989

zsh Z shell 1990

fish friendly interactive
shell

2005

more on the history of shells: https://developer.ibm.com/tutorials/l-linux-shells/

⇒ widely deployed, de facto standard to write scripts

⇒ documentation under man bash

⇒ typically stored under /bin/bash or /usr/bin/bash
17 / 59

Shell scripts allow to create new commands & save us a lot of time

⇒ automate daily tasks

⇒ system administration can be also automated
 (e.g., installation of dependencies,
 technical users, configuration)

⇒ often they are required to deploy services
 (wrapper scripts, startup scripts)

18 / 59

⇒ scripts are text files, simply create and edit them using e.g. vim

⇒ typical extension for shell scripts: .sh

⇒ to execute a script script.sh, set read&execute permissions (i.e. >= 500) and
run it via an interpreter (i.e. a shell), e.g. bash script.sh

⇒ Alternative: you can add a shebang (or bang) line to script.sh,
 and execute it then like an executable via ./script.sh

19 / 59

#!/bin/bash

If the first line of script.sh is formatted as
#!<interpreter>
./script.sh will be the same as
<interpreter> script.sh

⇒ everything after # is treated as a comment

20 / 59

#!/bin/bash

a first shell
script
clear # reset screen
echo "Hello world"

hw.sh

chmod 500 hw.sh ./hw.sh Hello world

clears terminal screen

prints Hello world to stdout

⇒ multiple statements/commands can be written in one line by
separating them using ;

Example:

cd /usr/bin;ls;pwd

21 / 59

is the same as
cd /usr/bin
ls
pwd

⇒ with the source command a script may be executed within the
current shell.

⇒ helpful, if you want to "save" multiple commands in a file and
execute them.

22 / 59

Define variables using

VARIABLE=value

⇒ variable names must consist of alphanumeric character

 or underscores (_) only

⇒ variable names are case sensitive

⇒ you can define a NULL variable (i.e., no value), using VARIABLE=

⇒ many people use a capital letter naming convention for bash variables
23 / 59

To print or access the value of a variable, use $

Examples:

DEST=/home/tux

cd $DEST

MESSAGE="hello world"

echo $MESSAGE
24 / 59

quotes allow for whitespace here!

⇒ when variables are defined using VARIABLE=value, they are
added to the local environment of the executing process

⇒ E.g., if we type VARIABLE=value directly in the shell,
 then VARIABLE is added to the local environment of the shell

⇒ If we write VARIABLE=value in a script, it is added to
 the local environment of the script during execution

25 / 59

⇒ when a script is invoked, bash will export its
 global environment to the script.

⇒ to add a variable to the global environment, use
 export VARIABLE
 or export VARIABLE=value

⇒ bash defines a set of predefined variables,
 called shell variables which are always exported.

⇒ to list the global environment, run printenv
26 / 59

Some useful shell variables (many more are available):

HOME the path of the home directory
USER name of the user
SHELL path to the shell
PWD current working directory

⇒ e.g. cd $HOME will go to the home directory

27 / 59

28 / 59

shell

script
local
environment

global
environment

local
environment

global
environment

export var

29 / 59

shell

script
local
environment

global
environment

local
environment

source script

Allows to override any variables (incl. the
shell ones)! Don't blindly source a script!

⇒ with export VARIABLE=value you can
 pass a variable to a script.

⇒ with source script.sh you can
 add variables to the shell's environment.

30 / 59

31

⇒ basic arithmetic operations may be executed using

 let expression

 ((expression))

 $((expression))

⇒ let expression and ((expression)) evaluate

 the provided expression using bash's rules

 regarding arithmetic evaluation.

32 / 59

semantically the same
or

or

⇒ $((expression)) evaluates the expression and

 performs then substitution of the result, i.e. returns the result.

⇒ use arithmetic evaluation for integers only!

 (no floating point support in bash)

33 / 59

34 / 59

- + unary plus/minus

** exponentiation

* / % multiplication, division, remainder(modulo)

+ - (binary) addition, subtraction

~ & ^ | bitwise negation, AND, exclusive OR and OR

<< >> left/right bitwise shifts

! logical negation

<= => < > comparison operators

== != equality / inequality

&& || logical AND, logical OR

35 / 59

var++
var--

variable post-increment or
post-decrement

++var
--var

variable pre-increment and
pre-decrement

= *= /= %= += -= <<= >>= &= ^- |= assignment operators

exprA?exprB:exprC conditional operator (i.e. if exprA then
return exprB else return exprC)

expr1, expr2 list operator (more next lecture)

⇒ can use parentheses, precedence like in C

36 / 59

x=42
echo $x #=> 42

let x=x+42
echo $x #=> 84

#use " to allow for whitespace
let "x = x - 4"
echo $x #=> 80

((x--))
echo $x #=> 79

can use whitespace within (()) here
((x *= 7)) #=> 553
echo $x

let "a=3"
let "b = 4"

let "c = a**2 + b **2"
echo $c

clamp to [10, ...)
use $(()) to get the result
echo $((c > 10 ? c : 10)) #=> 25

Note: within (()) or let or $(()),
the variables are referenced using their
name var, not by $var.

let expression ⇒ executes expression, but returns no result

((expression)) ⇒ executes expression, but returns no result

$((expression)) ⇒ executes expression and returns result

⇒ we can use variables as part of strings, e.g.

cd $HOME/.local/bin will change the directory to
/home/tux/.local/bin if HOME=/home/tux

Problems:
What is $avariableinasentence?
How can we define a variable with content $HOME?
What about whitespace/tokenization?

37 / 59

double quotes "..." ⇒ perform string interpolation

single quotes '...' ⇒ treat characters within literally

backticks `...` ⇒ treat … as command and return its stdout

⇒ all details available under man bash

38 / 59

⇒ single quotes treat each character within them as literal value.

⇒ However, ' can't be contained within ' '

Examples:

echo '$variables are not substituted'

echo 'All sorts of things are ignored in single quotes, like $ & * ; |.'

MESSAGE='hello world!'

echo $MESSAGE

39 / 59

⇒ I.e. single quotes preserve ALL chars except '

⇒ can use this for multiline strings, e.g.

sealion@server:~$ echo 'hello

> world'

hello

world
40 / 59

⇒ double quotes " " preserve literal value (incl. newline!) of
characters within them, except for $, `, \ and !. They can be
escaped using \, i.e. \$ \` \!

⇒ $ performs parameter/variable expansion

⇒ ` performs command substitution

⇒ \ is the escape character

⇒ ! performs history expansion

41 / 59

Examples:

MESSAGE="hello world"

echo $MESSAGE

echo "message is: $MESSAGE"

echo "message is: ${MESSAGE}\!"

cache_dir=./cache/

echo "images will be saved to ${cache_dir}images"

echo "images will be saved to $cache_dirimages"
42 / 59

with { } the variable
cache_dir is expanded

bash tries to get the value
of cache_dirimages.
⇒ variable does not
exists, hence result here
will be
images will be saved to

⇒ $ performs parameter expansion, command substitution or
arithmetic expansion

⇒ ${parameter} is substituted by the value of parameter
 (if parameter exists, else the empty string)

⇒ $(command) executes command in a subshell
 and returns its stdout

⇒ $ can do a lot more, cf. man bash

43 / 59

`cmd` is a shortcut for $(cmd)

Examples:

echo "ls returns `ls`"

echo "ls returns $(ls)"

echo "the current user is $(whoami) (should be
${USER})"

44 / 59

⇒ we can combine the different quote types

Examples:

echo 'To escape '"'"' simply surround it with "'

echo 'result of ls without newlines is: '`ls`

45 / 59

⇒ quoting just allows us to write special chars,
 but the values are still passed as words

Example:

PARAMS="file.txt dest"

cp $PARAMS # <= expands to cp dest src!

cp "$PARAMS" # <= expands to cp dest\ src!

cp "${PARAMS}" # <= expands to cp dest\ src!

cp '$PARAMS' # <= expands to cp \$PARAMS
46 / 59

these commands will
raise an error to stderr:
cp: missing destination
file operand after ...

Another example:

PARAMS="word1 word2"

echo PARAMS # <= output will be PARAMS

echo $PARAMS # <= output will be the word1 word2

47 / 59

We can pass data in different ways to a script:

1.) as parameters
2.) via stdin
3.) via (exported) environment variables
4.) via an interactive prompt

49 / 59

./script.sh param1 param2 param3 … param20

⇒ access the nth parameter via ${n} in a script.

⇒ $0 (short for ${0}) holds the command name (here ./script.sh)

=> $1 is param1

=> ${20} is param20

=> ${100} is NULL/empty string (not set)

50 / 59

⇒ within scripts it may be sometimes useful to access
 stdout, stderr, stdin as files

⇒ bash creates 3 special files for the 3 streams
 to which a command may write to or read from:

stdout /dev/stdout
stderr /dev/stderr
stdin /dev/stdin

Example: echo 'Hello world' > /dev/stdout

51 / 59

can use either cat for this and
access stdin indirectly

STDIN=$(cat)

or use the special file
/dev/stdin

52 / 59

#!/bin/bash
STDIN=$(cat)
echo "stdin via cat: $STDIN"
STDIN=`head -n 1 /dev/stdin`
echo "header: $STDIN"

stdin.sh

execute this script via
./stdin.sh < file.txt

⇒ you can access variables that have been exported in the parent
shell, via $VARIABLE

Example:

53 / 59

#!/bin/bash

echo "$USER started
this script via
$SHELL"

info.sh

⇒ use read -p PROMPT VARIABLE to display PROMPT, wait for
user to type input and save it to VARIABLE.

Example:

54 / 59

#!/bin/bash

echo "what is your favourite animal?"
read -p '> ' ANSWER
echo "It's a ${ANSWER}, so cool!"

prompt.sh
There are multiple ways
to customize the
prompt, e.g. for
passwords (-s) etc.
⇒ check man bash

⇒ read -p PROMPT VAR1 VAR2 VAR3 will issue a prompt,
perform word splitting on the received input and fill in the variables.

Example:

55 / 59

#!/bin/bash

echo "Please write a sentence"
read -p '> ' WORD1 WORD2 WORD3
echo 'First word: '"$WORD1"'
Second word: '"$WORD2"'
Third word: '"$WORD3"

prompt_multiword.sh

⇒ more advanced variable/parameter expansions

⇒ control structures

- conditional statements (if)

- loops (while/for)

⇒ arrays & dictionaries

57 / 59

⇒ get started early!

⇒ the first scripting homework

⇒ if you're stuck, get help

⇒ man bash is your friend.

58 / 59

