
CŠ
Practical
System
Skills
Fall ̈̆̇9 edition
Leonhard SpiegelĒerg
lspiegel@ēs.Ērown.edu

̆̊ Useƞs and Peƞmissions

CŠ Praētiēal System Skills
Fall ̈̆̇9
Leonhard SpiegelĒerg lspiegel@ēs.Ērown.edu

̆̊.̆̇ Peƞmissions

UNIX is a multi-user system.

How do you protect files from other users, the world?

How do you share files with other users?

How do you protect one from oneself?

3 / 68

̆̊.̆̇ Useƞs

On a system you'll find different logical users:

root ⇒ the OS account which has unlimited rights

admin ⇒ one or more accounts which may perform
 certain actions with root privileges

regular users ⇒ You, me & everyone other human out there

technical users ⇒ users created to run deployed programs
 with restricted privileges.

4 / 68
More on adding users, privileges, … in week 3 and the deployment lab.

HoǕ Uniǚ ēateļoƞizes useƞs...

̆̊.̆̇ Useƞs & Files

6 / 68

owner
creator of the file

group
multiple users

other
public, world

Each file is owned by a user ⇒ typically the creator

In addition, each file belongs to a group ⇒ smallest group: the user

̆̊.̆̇ Peƞmissions Ļoƞ files

Each file in Unix has 3 permissions:

read the file can be read, i.e. its contents displayed

write the file can be modified or deleted

execute the file can be run (i.e. executables or scripts)

7 / 68

̆̊.̆̇ Useƞs and peƞmissions

8 / 68

owner
creator of the file

group
multiple users

other
public, world

⇒ UNIX allows you to set (for each file) separate
 read/write/execute permissions for each party

̆̊.̆̇ Peƞmissions Ļoƞ diƞeētoƞies

Because directories are also files, they have read, write, or execute
permissions too. The meaning differs though:

9 / 68

permission file directory

read Allows file to be read.
Allows file names in the directory to

be read.

write
Allows file to be

modified.
Allows entries to be modified within

the directory.

execute
Allows file to be

executed.

Allows access to contents and
metadata for entries in the

directory.

HoǕ ēan Ǖe ļet inĻoƞmation aĒout
the peƞmissions oĻ a file?

10

̆̊.̆̈ ls -l ⇒ the lonļĻoƞmat

ls -l

total 88

-rw-r--r-- 1 sealion friends 14 9 Sep 8:01 file.txt

-rw-r--r-- 1 sealion friends 40390 9 Sep 9:00 penguin.jpg

11 / 68
owner grouppermission string

owner and user are usually the same!
Terms are used interchangeably here often.

̆̊.̆̈ Peƞmissions

12 / 68

permission string (10 characters)

user

- rw- r-- --x

group otherfile typefiletype symbol

regular file -

directory d

symbolic link l

pipe p

socket s

block device b

char device c

permission symbol

read r

write w

execute x

̆̊.̆̉ Settinļ peƞmissions - ēhmod

chmod mode file …

change mode, i.e. set or update file permissions

⇒ only the owner (or root) can run this command for a file

⇒ mode can be either a number (numeric mode) or a
 combination of symbols

13 / 68

̆̊.̆̊ ēhmod - sǛmĒoliē mode

Example:

chmod u=rw,g=rx,o= file.txt

14 / 68

permission symbol

read r

write w

execute x

party symbol

user u

group g

other o

all a

action symbol

add
permission +

remove
permission -

set to =

sets permissions for
file.txt to -rw-r-x---

combine multiple
statements with ,

̆̊.̆̋ ēhmod - numeƞiē mode
Instead of using symbols,

chmod can be used with an

even short syntax using the

following encoding.

15 / 68

Octal Binary String Description

0 000 --- no permissions

1 001 --x execute only

2 010 -w- write only

3 011 -wx write and execute

4 100 r-- read only

5 101 r-x read and execute

6 110 rw- read and write

7 111 rwx read, write and execute

chmod u=rw,g=rx,o= file.txt ⇒ chmod 650 file.txt

̆̊.̆̋ ēhmod - numeƞiē mode
⇒ combining permissions is adding numbers

4 = read 2 = write 1 = execute

Example: set user read and write permissions only:

16 / 68

Octal Binary String Description

0 000 --- no permissions

1 001 --x execute only

2 010 -w- write only

3 011 -wx write and execute

4 100 r-- read only

5 101 r-x read and execute

6 110 rw- read and write

7 111 rwx read, write and
execute

⇒ chmod 600 file.txt

U G O

Symbolic rw- --- ---

Binary 110 000 000

Decimal 6 = 4 + 2 0 0

̆̊.̆̌ ls -l ƞeǔisited

Consider the following output from ls -l:

drwxr-xr-x 10 sealion animals 320 28 Nov 2018 lecture02

17 / 40

Who owns the file?

What permissions does lecture02 have?

What type of file is lecture02?

̆̊.̆̌ ls -l ƞeǔisited

Consider the following output from ls -l:

drwxr-xr-x 10 sealion animals 320 28 Nov 2018 lecture02

18 / 40

owner group

file type

permission symbol

read r

write w

execute x

user group other

pathnamelast modifiedfile size in bytes

number of hard links

̆̊.̆̌ ēhmod - Ɲuiz

fill out the table, use ? if a permission bit can't be deducted.

19 / 40

file.txt
permissions

before
symbolic mode chmod numeric mode chmod

file.txt
permissions

after

rwx---rwx chmod u=,g=,o= file.txt

-w--w-rw- chmod 777 file.txt

-rw------ chmod 654 file.txt

chmod u=x --xrwxrwx

--------- chmod u+r,u-r,u=rw

4 = read 2 = write 1 = execute

̆̊.̆̌ ēhmod - Ɲuiz

solutions:

20 / 40

file.txt
permissions

before
symbolic mode chmod numeric mode chmod

file.txt
permissions

after

rwx---rwx chmod u=,g=,o= file.txt chmod 000 file.txt ---------

-w--w-rw- chmod u+rx,g=rwx,o+x file.txt chmod 777 file.txt rwxrwxrwx

-rw------ chmod u=rw,g=rx,o=r file.txt chmod 654 file.txt rw-r-xr--

???rwxrwx chmod u=x file.txt chmod 177 file.txt --xrwxrwx

--------- chmod u+r,u-r,u=rw file.txt chmod 600 file.txt rw-------

4 = read 2 = write 1 = execute

̆̊.̆̌ ēhoǕn/ēhļƞp - ēhanļinļ oǕneƞship
Change who owns the file and the group:

chown owner:group file …
chown owner file …
chown :group file …

Change the group the file belongs to to group.

chgrp group file ...

21 / 40

chown :group is the same as chgrp

Example:
touch share_this_file.txt
chown tux:friends share_this_file.txt
ls -l
-rw------- 1 tux friends 0 Sep 12 08:15 share_this_file.txt

When to use Ǖhiēh peƞmissions?

̆̊.̆̍ Hidinļ Ǜouƞ files Ļƞom eǔeƞǛone

23 / 40

(1) Protect your files from everyone else

⇒ u=rwx,g=,o= (700)

⇒ u=rw,g=,o= (600)

(2) Protect your files from everyone else and make sure you don't
 overwrite them or allow execution (no side effects)

⇒ u=r,g=,o= (400) Tip: chmod also works with wilcards!

̆̊.̆̍ CommonlǛ used peƞmissions

(3) Only you can modify files, others may still read them

⇒ u=rw,g=r,o=r (644)

(4) Only you have write access,
 others can get information about & read your files

⇒ u=rwx,g=rx,o=rx (755)

24 / 40

̆̊.̆̍ CommonlǛ used peƞmissions

(5) Only you have read/write access, others may still lookup
 information on your files but not read them

⇒ u=rwx,g=x,o=x (711)

25 / 40

̆̊.̆̎ DeĻault ļuide to ēhmod Ļoƞ files

26 / 40

world executables files u=rwx,g=rwx,o=rx 775

executables by group only u=rwx,g=rx,o= 750

group modifiable files u=rw,g=rw,o= 660

world readable files u=rw,g=r,o=r 644

group readable files u=rw,g=r,o= 640

private files u=rw,g=,o= 600

private executables u=rwx,g=,o= 700

DON'T USE 777 or 666.
These permissions pose security risks!

̆̊.̆̎

chmod for directories:

DON'T delete the execute bit on your folders.

Why? => you can not anymore access them using cd or ls!

⇒ If it happens and you own the file,
 you can fix this by chmod 700 path/

USE 700 (private), 711(traversable) or 755(readable) on directories.

27 / 40 Note: 770 is o.k. for shared folders

̆̊.̆̎ ēhmod Ļoƞ diƞeētoƞies
Example:
sealion wants to access /home/tux (700) and
run cat /home/tux/tux_profile.txt (644)

28 / 40

sealion@server:~$ ls -l /home/tux
ls: cannot open directory '/home/tux':
Permission denied

Explanation:

/home/tux has permissions 700

⇒ sealion has no read/execute permission,
hence ls -l /home/tux produces Permission
denied.
⇒ cat /home/tux/tux_profile.txt gives Permission
denied too, because the location of tux_profile.txt
can't be looked up because of the 700
permission on /home/tux

sealion@server:~$ cat
/home/tux/tux_profile.txt
cat: /home/tux/tux_profile.txt: Permission
denied

̆̊.̆̎ ēhmod Ļoƞ diƞeētoƞies
Example:
sealion wants to access /home/tux (711) and
run cat /home/tux/tux_profile.txt (644)

29 / 40

sealion@server:~$ ls -l /home/tux
ls: cannot open directory '/home/tux':
Permission denied

Explanation:

/home/tux has permissions 711

⇒ sealion has no read so ls fails. However,
sealion can cd into /home/tux!

⇒ cat /home/tux/tux_profile.txt works, because
sealion can lookup file location for /home/tux.

⇒ 711 useful to allow content access of files but
no traversal of directories!

sealion@server:~$ cat
/home/tux/tux_profile.txt
Tux

 a8888b.
 d888888b.
 8P"YP"Y88
 8|o||o|88
 8' .88
 8`._.' Y8.
 d/ `8b.
 dP . Y8b.
 d8:' " `::88b
 d8" 'Y88b
 :8P ' :888
 8a. : _a88P
 ._/"Yaa_: .| 88P|
 jgs \ YP" `| 8P `.
 a:f / \.___.d| .'
 `--..__)8888P`._.'

̆̊.̆̎ ēhmod Ļoƞ diƞeētoƞies
Example:
sealion wants to access /home/tux (755) and
run cat /home/tux/tux_profile.txt (644)

30 / 40

sealion@server:/home/tux$ ls -l /home/tux/
total 8
-rwxrwxrwx 1 tux tux 538 Sep 11 19:44 tux_profile.txt
-rwx------ 1 tux tux 96 Sep 11 18:41 tux_secret.txt

Explanation:

/home/tux has permissions 755

⇒ sealion read to both dir and file

⇒ 755 allows access & browsing.

sealion@server:~$ cat /home/tux/tux_profile.txt
Tux

 a8888b.
 d888888b.
 8P"YP"Y88
 8|o||o|88
 8' .88
 8`._.' Y8.
 d/ `8b.
 dP . Y8b.
 d8:' " `::88b
 d8" 'Y88b
 :8P ' :888
 8a. : _a88P
 ._/"Yaa_: .| 88P|
 jgs \ YP" `| 8P `.
 a:f / \.___.d| .'
 `--..__)8888P`._.'

What aĒout ̍̍̍ Ļoƞ diƞeētoƞies?

31

Just Don't.

32

One moƞe thinļ...

33

Speēial linuǚ peƞmissions

̆̊.̆̏ Speēial file peƞmissions

35 / 40

Besides the permission for user/group/other, Linux has 3 special
permissions which can be combined:

permission octal symbol meaning

setuid 4 s
Allows a process to run as the owner of the file, not the user
executing it

setgid 2 s
Allows a process to run with the group of the file, not the group
of the user executing it

sticky bit 1 t
prevents a user from deleting another user's files even if they
would normally have permission to do so

̆̊.̆̏ Speēial file peƞmissions

Examples:

chmod +t file.txt ⇒ sets sticky bit for file.txt

chmod g+s file.txt ⇒ sets sgid bit for file.txt

chmod u+s file.txt ⇒ sets suid bit for file.txt

36 / 40

̆̊.̆̏ Speēial file peƞmissions

37 / 40

setuid setgid sticky bit

permission has S where execute
bit x is normally located for user,
s if execute bit x for user is also
set for a file.

permission has S where execute
bit x is normally located for
group, s if execute bit x for group
is also set for a file.

permission has T where execute
bit x is normally located for
other, t if execute bit x is also set
for a file.

ls -l for special permissions:

Examples:

chmod 1611 file.txt ⇒ -rw---x--t (sticky bit)

chmod 2644 file.txt ⇒ -rw-r-Sr-- (setgid)

chmod 4400 file.txt ⇒ -r-S------ (setuid)

chmod 7777 file.txt ⇒ -rwsrwsrwt (ALL permissions set)

̆̊.̆̏ Speēial file peƞmissions

Why are they needed?

sticky bit:
⇒ prevents other users from deleting files/directories in a public
folder. E.g., /tmp where all users store temporary files.

ls -l /
drwxrwxrwt 9 root root 4096 Sep 12 01:47 tmp

38 / 40

sticky bit set for /tmp. /tmp has 777 rights!

̆̊.̆̏ Speēial file peƞmissions
Why are they needed?

setuid:
⇒ passwd allows to change the password for a user. However, passwords need
to be stored somewhere in a file. With setuid the program passwd runs with root
privileges, but the user has no access to the password file.

ls -ls /usr/bin/passwd

-rwsr-xr-x 1 root root 59640 Mar 22 19:05 /usr/bin/passwd

39 / 40

setuid set for passwd, i.e. passwd runs under root permissions
because the program is owned by root!

̆̊.̆̏ Speēial file peƞmissions
Why are they needed?

setgid:
⇒ Files created in a shared folder which has the setgid bit set will belong to the
group the folder belongs to.

ls /

drwxrws--- 2 sealion friends 4096 Sep 12 02:05 recipes

40 / 40

/recipes is a shared folder between tux and sealion. Files created there
will belong to friends!

links

41

̆̊.̇̆ Links

42 / 40

Links are special files which point to another file (in the wider
sense).

ln -s target link_name

creates a symbolic link link_name pointing to target (Note the
order!)

̆̊.̇̆ Links

43 / 40

Example:

Assuming we are in Tux's home directory (pwd ⇒ /home/tux), we
could create a shortcut to work with Sealion's directory:

ln -s /home/sealion sl

ls -l

lrwxrwxrwx 1 tux tux 14 Sep 12 02:46 sl -> /home/sealion/

cd sl

-bash: cd: sl: Permission denied

permissions do not matter for the link. It's
a pointer. When used, the target's
permissions will be checked.

l for link!

a link is a pointer, thus you see
link_name -> target here!

̆̊.̇̆ Links

44 / 40

Advice on links:
The link command is very

powerful. If you have any doubt
on how to use it, use per default

ln -s.
Always check the order first!
Other options may break your
system if you don't know what

you're doing.

̆̋ Stƞeams & Pipes
CŠ Praētiēal System Skills
Fall ̈̆̇9
Leonhard SpiegelĒerg lspiegel@ēs.Ērown.edu

Sinļle ēommands aƞe ļƞeat…

… Ēut hoǕ aĒout ēomĒininļ them?

̆̋.̆̇ Stƞeams

Where do commands get their input?

Where do commands send their output?

⇒ two special files where output is sent to and one special file
where input is read from:

stdin stdout stderr

47 / 40
standard input standard output & standard error

̆̋.̆̇ Stƞeams

⇒ A stream is a sequence of characters
⇒ Each of the three streams is identified by a unique file descriptor
(number)
⇒ I.e. streams are actually a special type of file!

48 / 40

Stream file descriptor

stdin 0

stdout 1

stderr 2

̆̋.̆̇ stdout & stdeƞƞ

What is happening when we run a command?

⇒ ls /home/sealion with sufficient permissions will print its
output to stdout which in turn is displayed by the terminal.

⇒ Without the permissions, an error message will be print to stderr
(displayed by the terminal too).

49 / 40

̆̋.̆̈ Standaƞd I/O ƞediƞeētion: output

⇒ Unix allows you to redirect streams from one file to another

n> file

redirects output from file descriptor n to a file, overwrites it if file
exists.

n>> file

redirects output from file descriptor n to a file. If file doesn't
exist, creates it, else content is appended.

50 / 40

n can be omitted, then it defaults to stdout.
I.e. cmd > file writes stdout of cmd to file!

̆̋.̆̈ Output ƞediƞeētion eǚample

cwd is recipes

ls *.txt > all_txt_files.txt

51 / 40

recipes

penguin.txt calamari.txt perch.txtprofile.jpg

recipes

penguin.txt calamari.txt perch.txtprofile.jpg

calamari.txt
penguin.txt
perch.tst

all_txt_files.txt

̆̋.̆̈ Output ƞediƞeētion eǚample

Running ls *.txt >> all_txt_files.txt then,
will set the contents of all_txt_files.txt to:

calamari.txt
penguin.txt
perch.txt
all_txt_files.txt
calamari.txt
penguin.txt
perch.txt 52 / 40

output from
ls *.txt > all_txt_files.txt

̆̋.̆̈ Output ƞediƞeētion
More examples:

53 / 40

ls ~ > /dev/null redirects stdout to special file /dev/null which
discards data

mkdir /data 2> mkdir_err_log.txt redirects stderr to mkdir_err_log.txt (run as
regular user without privileges on /)

cat > write_to_me.txt
1
2
3
Ctrl-d

redirects stdout to write_to_me.txt. cat
without param allows to interactively write
input, stop input mode by pressing Ctrl and d

cat /home/tux/tux_secret.txt 2> err.txt >
stolen_secret.txt

tries to access Tux's secret file tux_secret.txt
(protected through file permissions!) ⇒ error
gets written to err.txt, no output to
stolen_secret.txt (empty file)

̆̋.̆̉ A neǕ ēommand - eēho!
echo [STRING]
prints a new line, containing STRING if provided.

Examples:

sealion@server:~$ echo Tux is a penguin
Tux is a penguin
sealion@server:~$ echo "usually afraid of seals and sealions"
usually afraid of seals and sealions
sealion@server:~$ echo 'but became friends with sealion!'
but became friends with sealion!
sealion@server:~$ echo "isn't that great?"
isn't that great?

54 / 40

surround your text with ' '
or " ". More on these next
lecture.

̆̋.̆̊ Input ƞediƞeētion

less commonly used than output redirection.

man cat ⇒ when cat has no argument, it reads its input from stdin

echo 'hello tux!' > output.txt

cat < output.txt

55 / 40

will print 'hello tux!' to
stdout

̆̋.̆̋ Some Ēasiē teǚt pƞoēessinļ ēommands

56 / 40

sort [file] sorts lines of file, or stdin if no input is given

head [file]
prints per default first 10 lines of file to stdout, or stdin if
no input is given. Use -n <count> to print <count> lines,
-c <count> to print <count> bytes

tail [file] same as head, just takes the last lines (also with -n / -c)

̆̋.̆̌ Buildinļ pipelines

printf "sealion\ntux\npenguin\ncrabby" > temp.txt

sort temp.txt > temp2.txt

head -n 3 temp2.txt > result.txt

rm temp.txt

rm temp2.txt

57 / 40

prints like in C / Java / Python a formatted string to stdout. I.e.
stdout will have sealion, tux, penguin, crabby each on one line.
(\n is the newline character

Can we do better?

̆̋.̆̌ Buildinļ pipelines

printf "sealion\ntux\npenguin\ncrabby" > temp.txt

sort < temp.txt > temp2.txt

head -n 3 < temp2.txt > result.txt

rm temp.txt

rm temp2.txt

58 / 40

rewriting commands to use stdin and feeding them temp files

Can we do even better?

̆̋.̆̍ Pipes

cmd1 | cmd2

pipe operator | ⇒ connects stdout of cmd1 to stdin of cmd2

⇒ allows you to get rid of temporary files

Example:

printf "sealion\ntux\npenguin\ncrabby" |

sort |

head -n 3 > result.txt

59 / 40

End of lecture.
Next class: Tue, ̊pm-̋:20pm @ CIT ̊77

