
CS6
Practical
System
Skills
Fall 2019 edition
Leonhard Spiegelberg
lspiegel@cs.brown.edu

22.98 Logistics

⇒ HW10 submission deadline extended to
 next Tuesday, Dec 10th 4pm

⇒ Final projects due 15th Dec

Last lecture: today

2 / 32

22.99 Recap DataFrames

⇒ DataFrames

→ can hold tabular-like data
→ used for small-medium sized datasets

⇒ quick manipulations, helpful for plotting, tables in Latex, and
 html tables in Flask

⇒ Data scientists' primary tool

3 / 32

23 Clusters
CS6 Practical System Skills
Fall 2019
Leonhard Spiegelberg lspiegel@cs.brown.edu

23.01 What comes next?
So far:
Single machine,
multiple containers.

⇒ How about working with multiple,
 physical machines?

5 / 32

Virginia Tech's kinetic sculpture consisting of
256 Raspberry PIs

23.01 Clusters
What is a cluster?

⇒ set of connected
 computers (servers), which can
 be viewed as a single system.

⇒ typically, a cluster is divided into
 nodes which do have several
 roles assigned.

6 / 32

Node Node Node Node

Cluster

23.02 Nodes
Node = single physical machine

⇒ each node has one (or more) role(s) typically
 assigned, common are

1. login node
→ used to login to a cluster

2. master/manager node
→ used to coordinate a service, provides indirect access to
workers

3. slave/worker node
→ executes actual work

4. data node
→ a node primarily concerned to store/provide data

7 / 32

Node Node

Node Node

Cluster

23.03 Logging into a cluster

⇒ in order to protect a cluster, usually one or more machines
 are designated to be login nodes

→ e.g. ssh.cs.brown.edu

⇒ other machines are not reachable from internet, but merely
 from login node (→ SSH agent-forwarding)

⇒ development and testing should happen on login node
→ Don't store large files there, do not run production code

 on a login node

8 / 32

23.04 Running things on a cluster

⇒ To run a program/application over multiple nodes, you typically
 package it into a job

→ many frameworks do that automatically for you

⇒ as a user you submit your Job to a queue, a scheduler then
 assigns resources and executes your job eventually.

⇒ Popular schedulers are:
SLURM (academia/science)

 Mesos, YARN or Kubernetes (industry)

9 / 32

23.05 Queue / Jobs example - science/academia
⇒ TACC is a cluster from the U of Texas
 (https://portal.tacc.utexas.edu/user-guides/lonestar5#running-queues)
⇒ Brown also has a cluster, oscar https://docs.ccv.brown.edu/oscar/!

10 / 32

⇒ To submit a job, you write a bash-like SLURM script and submit it via
 sbatch script.sh

https://portal.tacc.utexas.edu/user-guides/lonestar5#running-queues
https://docs.ccv.brown.edu/oscar/

23.06 Queue / Jobs example - industry

⇒ Whereas scientists write typically SLURM scripts and explicitly
 submit jobs, schedulers used in industry are usually
 integrated with frameworks for more convenience.

Example:
spark-submit --master yarn --deploy-mode cluster
 --queue production
 ingest-job.jar conf.yml

11 / 32

Spark is a popular big
data framework

23.07 Practical tips when working on a cluster
⇒ typically you don't have admin rights, i.e. can't install additional software

→ to solve this, use "user" mode, i.e. install software in some

 directory, setup paths, zip dependencies and ship them

→ many users use $HOME/.local

→ pip3 install <package> --user to install to .local

→ ./configure --prefix=$HOME/.local for software requiring

 a local build/compilation

12 / 32

Software for clusters

23.08 Distributed file storage

14 / 32

⇒ allow to store (large) files distributed to get several benefits

→ faster reads/writes when chunked/partitioned

→ fault-tolerance through replication

→ store more data

There are several kinds of distributed file storage, popular are:

1. Object stores, e.g. Amazon S3

2. Distributed file systems, e.g. Ceph or HDFS (Hadoop FileSystem)

⇒ In production scenarios you'll typically work with a distributed system

23.09 Compute frameworks
⇒ Can use a distributed database, ingest data into it and perform analytics

→ Popular solutions are Vertica, OmniSci(MapD), …

⇒ Sometimes you just want to compute over input files, no need for a database.
 Distributed programming frameworks provide this functionality:

- Science: MPI
- Industry: Spark, Hadoop MapReduce, Flink, Storm, Presto, ...

15 / 32

23.10 WimPi
⇒ It's a *NIX world
⇒ Research project for next-gen
 system on a Raspberry PI
 cluster

⇒ 25 nodes

16 / 59

End of new content.

Course recap - what did we learn?

23.11 Week 1

19 / 32

⇒ Working with a CLI, REPL style

⇒ File paths: /absolute and ../relative/..

⇒ Navigating the file system in a shell (cd, ls, pwd)

⇒ Working with files (mv, cp, rm, cat, hexdump)

⇒ Wildcard patterns (ls otp_fl?ight_*.csv)

⇒ Brace expansion (mv *.{csv,json} folder/)

23.12 Week 2
⇒ user permissions
 (chmod g+x,u=rw,o= file.txt)

⇒ Links (ln -s target link_name)

⇒ Streams and Pipes (cmd1 | cmd2,
 redirection e.g. cmd > out.txt)

⇒ Stdin(0), Stdout(1), Stderr(2)

⇒ Stream redirection (cmd > out.txt 2>&1,
 cmd 2>&1 | tee out.txt)

20 / 32

23.13 Week 3
⇒ Bash scripting
⇒ Shell variables, environment variables
⇒ Passing parameters to scripts
 (stdin, parameters, environment, read)
⇒ Arithmetic expansion ((x *= 7))
⇒ Quoting (Difference between ', " and `)
⇒ command expansion via `cmd` or $(cmd)
⇒ return/status codes, && and II
⇒ control flow via if
⇒ tests, i.e. [[…]], […], and test
⇒ arrays and dictionaries (ARR=(1 2 3) or declare -a d)

21 / 32

23.14 Week 4
⇒ SSH

⇒ hostnames, URLs, URIs

⇒ Practical public key cryptography via SSH keys

⇒ SSH config
 (~/.ssh/config, ~/.ssh/known_hosts,
 ~/.ssh/authorized_keys)

⇒ scp and rsync

⇒ Tape archives (tar)

⇒ Processes (ps, kill, fg, bg) and Signals (Ctrl + C, Ctrl + \, …)
22 / 32

23.15 Week 5
⇒ String processing (wc, uniq, sort, tr)

⇒ CSV files (cut, paste)

⇒ process substitution (<(echo "Hello world"))

⇒ diff

⇒ xargs

⇒ Regular expressions, grep

⇒ sed and awk

23 / 32

23.16 Week 6

⇒ HTML (<html> … </html>)

⇒ HTTP requests (GET/POST/…)

⇒ Using cURL to issue HTTP requests

⇒ CSS

24 / 32

23.17 Week 7
⇒ Git, version control

⇒ Git areas (working dir, staging area, repository)

⇒ creating commits, pushing them to a remote

⇒ Checking out old versions, detached HEAD

⇒ Branching and Pull requests

⇒ merge conflicts

⇒ rebasing vs. merging

⇒ Git workflows
25 / 32

23.18 Week 8

⇒ Python

26 / 32

23.19 Week 9
⇒ Flask, developing a web backend
 using python

⇒ dynamic vs. static websites

⇒ routes(/blog/<int:year>/<int:month>)
 and requests

⇒ Templating using Jinja2

⇒ HTML forms

⇒ Javascript / JSON / REST
27 / 32

23.20 Week 10

⇒ Databases

⇒ relational databases (Postgres)

⇒ Document stores (MongoDB)

⇒ SELECT, INSERT, CREATE TABLE,
 UPDATE, DELETE, …

⇒ Transactions

⇒ Aggregations

28 / 32

What comes next?

23.21 Life after CS6

31 / 32

Courses for Spring 2019/2020, if you liked…
… UNIX/programming/systems ⇒ CS131: Fundamentals of Computer Systems
… Databases ⇒ CS127: DB Management Systems
… DataFrames/Analytics ⇒ CS1951A: Data Science
… Websites ⇒ CS132: Creating Modern Web Applications
… Regular expressions ⇒ CS101: Theory of Computation
… Programming/Javascript ⇒ CS32: Intro to SE

TAing

Research

Internships

Build cool stuff!

End of lectures.
Final Projects: Sun 15th Dec, 3-5pm

